• Sonja Jevtić Faculty of Natural Science and Mathematics, Kosovska Mitrovica
  • Dalibor Stanković The Vinča Institute of Nuclear Sciences, University of Belgrade
  • Anja Jokić Faculty of Natural Science and Mathematics, Kosovska Mitrovica
  • Branka Petković Faculty of Natural Science and Mathematics, Kosovska Mitrovica
Keywords: Electroanalytical methods, Techniques, Pesticides quantification, Electrode modifiers,


This review paper shows the progress made in the last five years in electrochemical methods applied for the purpose of detection and quantification of pesticides - nowadays the most serious pollutants of the environment. Most pesticides can be successfully analyzed by chromatographic techniques, but because of high prices and immobility of the apparatus, the complexity of the method and the necessary special preparation of the samples, electrochemical methods have been recognized as an excellent alternative solution due to their advantages in speed, economy, simplicity and no exhaustive sample preparation. As the main limitation for use of this methods is electrochemical inactivity of many pesticides, this paper gives the essence of all elctroanalytical methods for pesticide quantification applied in last period, with an overview of the electrode materials and modifiers applied in a purpose to enhance analytical procedures application and characteristics of electrochemical sensors.



Arduini, F., Cinti, S., Scognamiglio, V., & Moscone, D. 2016. Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchimica Acta, 183(7), pp. 2063-2083. doi:10.1007/s00604-016-1858-8

Babu, T. R., Reddy, S. R., & Sujana, P. 2014. Comparative voltammetric study and determination of carbamate pesticide residues in soil at carbon nanotubes paste electrodes. Journal of Electrochemical Science and Engineering, doi:10.5599/jese.2013.0041

Bakirhan, N. K., Uslu, B., & Ozkan, S. A. 2018. Food Safety and Preservation. Netherlands: Elsevier.

Ben, B. M., Belhadj, A. H., Abdelhédi, R., & Samet, Y. 2016. Electrochemical behavior and analytical detection of Imidacloprid insecticide on a BDD electrode using square-wave voltammetric method. Chinese Chemical Letters, 27(5), pp. 666-672. doi:10.1016/j.cclet.2015.12.032

Cai, J., Zhou, L., & Han, E. 2014. A Sensitive Amperometric Acetylcholine Biosensor Based on Carbon Nanosphere and Acetylcholinesterase Modified Electrode for Detection of Pesticide Residues. Analytical Sciences, 30(6), pp. 669-673. doi:10.2116/analsci.30.669

Chauhan, N., Narang, J., & Jain, U. 2016. Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid). Journal of Experimental Nanoscience, 11(2), pp. 111-122. doi:10.1080/17458080.2015.1030712

Chehimi, M. M., & Pinson, J. 2013. Applied surface chemistry of nanomaterials. New York: Nova publishers.

Chýlková, J., Tomášková, M., Švancara, I., Janíková, L., & Šelešovská, R. 2015. Determination of methiocarb pesticide using differential pulse voltammetry with a boron-doped diamond electrode. Analytical Methods, 7(11), pp. 4671-4677. doi:10.1039/c5ay00979k

Costa, D. J. E., Santos, J. C. S., Sanches-Brandão, F. A. C., Ribeiro, W. F., Salazar-Banda, G. R., & Araujo, M. C. U. 2017. Boron-doped diamond electrode acting as a voltammetric sensor for the detection of methomyl pesticide. Journal of Electroanalytical Chemistry, 789, pp. 100-107. doi:10.1016/j.jelechem.2017.02.036

Damalas, C. A. 2009. Understanding benefits and risks of pesticide use. review. Scientific Research and Essay, 4(10), pp. 945-949.

Djurdjić, S., Vukojević, V., Jevtić, S., Pergal, M. V., Petković, B. B., & Stanković, D. M. 2018. Herbicide Clomazone Detection Using Electroanalytical Approach Using Boron Doped. Int. J. Electrochem. Sci. . Diamond Electrode. Int. J. Electrochem. Sci., 13, pp. 2791 – 2799. doi: 10.20964/2018.03.39

Feng, S., Yang, R., Ding, X., Li, J., Guo, C., & Qu, L. 2015. Sensitive electrochemical sensor for the determination of pentachlorophenol in fish meat based on ZnSe quantum dots decorated multiwall carbon nanotubes nanocomposite. Ionics, 21(12), pp. 3257-3266. doi:10.1007/s11581-015-1512-1

Figueiredo-Filho, L. C. S., Sartori, E. R., & Fatibello-Filho, O. 2015. Electroanalytical determination of the linuron herbicide using a cathodically pretreated boron-doped diamond electrode: comparison with a boron-doped diamond electrode modified with platinum nanoparticles. Analytical Methods, 7(2), pp. 643-649. doi:10.1039/c4ay02182g

Fischer, J., Dejmkova, H., & Barek, J. 2011. Electrochemistry of Pesticides and its Analytical Applications. Current Organic Chemistry, 15(17), pp. 2923-2935. doi:10.2174/138527211798357146

Gothwal, A., Beniwal, P., Dhull, V., & Hooda, V. 2014. Preparation of Electrochemical Biosensor for Detection of Organophosphorus Pesticides. International Journal of Analytical Chemistry, 2014, pp. 1-8. doi:10.1155/2014/303641

Govindasamy, M., Mani, V., Chen, S., Chen, T., & Sundramoorthy, A.K. 2017. Methyl parathion detection in vegetables and fruits using silver@graphene nanoribbons nanocomposite modified screen printed electrode. Scientific Reports, 7(1). doi:10.1038/srep46471

Guler, M., Turkoglu, V., & Basi, Z. 2017. Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetylcholinesterase biosensor based on Nafion/Ag@rGO-NH2 nanocomposites. Electrochimica Acta, 240, pp. 129-135. doi:10.1016/j.electacta.2017.04.069

Hassani, S., Momtaz, S., Vakhshiteh, F., Maghsoudi, A. S., Ganjali, M. R., Norouzi, P., & Abdollahi, M. 2017. Biosensors and their applications in detection of organophosphorus pesticides in the environment. Archives of Toxicology, 91(1), pp. 109-130. doi:10.1007/s00204-016-1875-8

İpek, Y., Şener, M. K., & Koca, A. 2015. Electrochemical pesticide sensor based on Langmuir–Blodgett film of cobalt phthalocyanine-anthraquinone hybrid. Journal of Porphyrins and Phthalocyanines, 19(05), pp. 708-718. doi:10.1142/s1088424615500182

Irandoust, M., & Haghighi, M. 2016. Electrochemical Study and Determination of Dinitramine Using Glassy Carbon Electrodes Modified with Multi-walled Carbon Nanotubes. Electrochemistry, 84(4), pp. 228-233. doi:10.5796/electrochemistry.84.228

Jevtić, S., Stefanović, A., Stanković, D. M., Pergal, M. V., Ivanović, A. T., Jokić, A., & Petković, B. B. 2018. Boron-doped diamond electrode — A prestigious unmodified carbon electrode for simple and fast determination of bentazone in river water samples. Diamond and Related Materials, 81, pp. 133-137. doi:10.1016/j.diamond.2017.12.009

Jevtić, S., Vukojević, V., Djurdjić, S., Pergal, M. V., Manojlović, D. D., Petković, B. B., & Stanković, D. M. 2018. First electrochemistry of herbicide pethoxamid and its quantification using electroanalytical approach from mixed commercial product. Electrochimica Acta, 277, pp. 136-142. doi:10.1016/j.electacta.2018.05.004

Jokanović, V. 2013. Nanomedicina - najveći izazov 21. veka. Beograd: Data status.

Khadem, M., Faridbod, F., Norouzi, P., Foroushani, A. R., Ganjali, M. R., & Shahtaheri, S. J. 2016. Biomimetic electrochemical sensor based on molecularly imprinted polymer for dicloran pesticide determination in biological and environmental samples. Journal of the Iranian Chemical Society, 13(11), pp. 2077-2084. doi:10.1007/s13738-016-0925-8

Li, Y., Xu, M., Li, P., Dong, J., & Ai, S. 2014. Nonenzymatic sensing of methyl parathion based on graphene/gadolinium Prussian Blue analogue nanocomposite modified glassy carbon electrode. Analytical Methods, 6(7), p. 2157. doi:10.1039/c3ay41820k

Liang, H. C., Bilon, N., & Hay, M. T. 2014. Analytical Methods for Pesticide Residues. Water Environment Research, 86(10), pp. 2132-2155. doi:10.2175/106143014x13975035526185

Liu, X., Li, W., Li, L., Yang, Y., Mao, L., & Peng, Z. 2014. A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sensors and Actuators B: Chemical, 191, pp. 408-414. doi:10.1016/j.snb.2013.10.033

Mashuni, Ramadhan, L. O. A. N., Jahiding, M., & Herniati, 2016. Analysis of diazinon pesticide using potentiometric biosensor based on enzyme immobilized cellulose acetate membrane in gold electrode. IOP Conference Series: Materials Science and Engineering, 107, p. 12013. doi:10.1088/1757-899x/107/1/012013

Melo, L. C., Julião, M. S. S., Milhome, M. A. L., do Nascimento, R. F., De, S. D., de Lima-Neto, P., & Correia, A. N. 2018. Square Wave Adsorptive Stripping Voltammetry Determination of Chlorpyriphos in Irrigation Agricultural Water. Journal of Analytical Chemistry, 73(7), pp. 695-704. doi:10.1134/s1061934818070109

Mogha, N. K., Sahu, V., Sharma, M., Sharma, R. K., & Masram, D. T. 2016. Biocompatible ZrO 2 - reduced graphene oxide immobilized AChE biosensor for chlorpyrifos detection. Materials & Design, 111, pp. 312-320. doi:10.1016/j.matdes.2016.09.019

Mostafa, G. 2010. Electrochemical Biosensors for the Detection of Pesticides. The Open Electrochemistry Journal, 2(1), pp. 22-42. doi:10.2174/1876505x01002010022

Navaratne, A., & Priyanth, N. 2011. Chemically Modified Electrodes for Detection of Pesticides. In M. Stoytcheva Ed., Pesticides in the Modern World - Trends in Pesticides Analysis.IntechOpen. doi:10.5772/17320

Ni, Y., Qiu, P., & Kokot, S. 2005. Simultaneous voltammetric determination of four carbamate pesticides with the use of chemometrics. Analytica Chimica Acta, 537(1-2), pp. 321-330. doi:10.1016/j.aca.2004.12.080

Oliveira, T. M. B. F., Barroso, M. F., Morais, S., Araujo, M., Freire, C., Lima-Neto, P., Correia, A.N., Oliveira, M. B. P. P., & Delerue-Matos, C. 2014. Sensitive bi-enzymatic biosensor based on polyphenoloxidases–gold nanoparticles–chitosan hybrid film–graphene doped carbon paste electrode for carbamates detection. Bioelectrochemistry, 98, pp. 20-29. doi:10.1016/j.bioelechem.2014.02.003

-Population Division Department of Economic and Social Affairs United Nations Secretariat. . The World at Six Billion. http://mysite.du.edu/~rkuhn/ints4465/world-at-six-billion.pdf.

Pop, A., Manea, F., Flueras, A., & Schoonman, J. 2017. Simultaneous Voltammetric Detection of Carbaryl and Paraquat Pesticides on Graphene-Modified Boron-Doped Diamond Electrode. Sensors, 17(9), p. 2033. doi:10.3390/s17092033

Reddy, P. P., Ofamaja, A. E., Reddy, C. N., & Naido, E. B. 2016. Square Wave Voltammetric Detection of Dimethylvinphos and Naftalofos in Food and Environmental Samples Using RGO/CS modified Glassy Carbon Electrode. Int. J. Electrochem. Sci, 11, pp. 65-79.

Ribeiro, F. W. P., Barroso, M. F., Morais, S., Viswanathan, S., Lima-Neto, P., Correia, A. N., Oliveira, M. B. P. P., & Delerue-Matos, C. 2014. Simple laccase-based biosensor for formetanate hydrochloride quantification in fruits. Bioelectrochemistry, 95, pp. 7-14. doi:10.1016/j.bioelechem.2013.09.005

Sanford, C., Sabapathy, D., Morrison, H., & Gaudreau, K. 2015. Systematic Review. In Pesticides and human health. Prince Edward Island, Canada. Part 1.

Sanghavi, B. J., Wolfbeis, O. S., Hirsch, T., & Swami, N. S. 2015. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchimica Acta, 182(1-2), pp. 1-41. doi:10.1007/s00604-014-1308-4

Sani, R. K., Bagri, L. P., & Bajpai, A. K. 2017. New Pesticides and Soil Sensors. Netherlands: Elsevier. chapter 14.

Sassolas, A., Prieto-Simón, B., & Marty, J. 2012. Biosensors for Pesticide Detection: New Trends. American Journal of Analytical Chemistry, 03(03), pp. 210-232. doi:10.4236/ajac.2012.33030

Selva, T. M. G., Araujo, W. R., & Paixao, T. R. L. C. 2017. Electrochemical sensor for discrimination of carbamates and organophosphorus pesticides. In 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN).Institute of Electrical and Electronics Engineers (IEEE), pp. 1-3. doi:10.1109/isoen.2017.7968922

Shahtaheri, S. J., Faridbod, F., & Khadem, M. 2017. Highly Selective Voltammetric Sensor Based on Molecularly Imprinted Polymer and Carbon Nanotubes to Determine the Dicloran Pesticide in Biological and Environmental Samples. Procedia Technology, 27, pp. 96-97. doi:10.1016/j.protcy.2017.04.041

Skoog, D. A., Holler, F. J., & Nieman, A. T. 1997. Principles of instrumental analysis. Unite States of America: Books/Cole. fifth edition.

Talan, A., Mishra, A., Eremin, S. A., Narang, J., Kumar, A., & Gandhi, S. 2018. Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosensors and Bioelectronics, 105, pp. 14-21. doi:10.1016/j.bios.2018.01.013

Tago, D., Andersson, H., & Treich, N. 2014. Pesticides and Health: A Review of Evidence on Health Effects, Valuation of Risks, and Benefit-Cost Analysis. In G. C. Blomquist& K. Bolin Eds., Adv Health Econ Health Serv Res.Emerald., pp. 203-295. doi:10.1108/s0731-2199_2014_0000024006

Tang, J., & Tang, D. 2015. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Microchimica Acta, 182(13-14), pp. 2077-2089. doi:10.1007/s00604-015-1567-8

Teadoum, D. N., Noumbo, S. K., Arnaud, K. T., Ranil, T. T., Mvondo, Z. A. D., & Tonle, I.K. 2016. Square Wave Voltammetric Determination of Residues of Carbendazim Using a Fullerene/Multiwalled Carbon Nanotubes/Nafion//Coated Glassy Carbon Electrode. International Journal of Electrochemistry, 2016, pp. 1-9. doi:10.1155/2016/7839708

Thota, R., & Ganesh, V. 2016. Selective and sensitive electrochemical detection of methyl parathion using chemically modified overhead projector sheets as flexible electrodes. Sensors and Actuators B: Chemical, 227, pp. 169-177. doi:10.1016/j.snb.2015.12.008

Tonle, I., & Ngameni, E. 2011. Voltammetric Analysis of Pesticides. In M. Stoytcheva Ed., Pesticides in the Modern World - Trends in Pesticides Analysis.IntechOpen. doi:10.5772/18623

Uslu, B., & Ozkan, S. 2007. Electroanalytical Application of Carbon Based Electrodes to the Pharmaceuticals. Analytical Letters, 40(5), pp. 817-853. doi:10.1080/00032710701242121

Vukojević, V., Djurdjić, S., Jevtić, S., Pergal, M., Marković, A., Mutić, J., Petković, B. B. & Stanković D. M. 2018. First electrochemical investigation of organophosphorus pesticide azametiphos and its quantification using electroanalytical approach. International Journal of Environmental Analytical Chemistry, 98(13), pp. 1175-1185. doi:10.1080/03067319.2018.1537394

Xu, F., Cui, Z., Li, H., & Luo, Y. 2017. Electrochemical determination of trace pesticide residues based on multiwalled carbon nanotube grafted acryloyloxy ferrocene carboxylates with different spacers. RSC Advances, 7(12), pp. 7431-7441. doi:10.1039/c6ra26436k

Xu, G., Huo, D., Hou, C., Zhao, Y., Bao, J., Yang, M., & Fa, H. 2018. A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta, 178, pp. 1046-1052. doi:10.1016/j.talanta.2017.08.086

Yang, J., Wang, Q., Zhang, M., Zhang, S., & Zhang, L. 2015. An electrochemical fungicide pyrimethanil sensor based on carbon nanotubes/ionic-liquid construction modified electrode. Food Chemistry, 187, pp. 1-6. doi:10.1016/j.foodchem.2015.04.009

Yao, Y., Zhang, L., Xu, J., Wang, X., Duan, X., & Wen, Y. 2014. Rapid and sensitive stripping voltammetric analysis of methyl parathion in vegetable samples at carboxylic acid-functionalized SWCNTs–β-cyclodextrin modified electrode. Journal of Electroanalytical Chemistry, 713, pp. 1-8. doi:10.1016/j.jelechem.2013.11.024

Zeng, Y., Zhu, Z., Du, D., & Lin, Y. 2016. Nanomaterial-based electrochemical biosensors for food safety. Journal of Electroanalytical Chemistry, 781, pp. 147-154. doi:10.1016/j.jelechem.2016.10.030

Zhang, Y., Liu, H., Yang, Z., Ji, S., Wang, J., Pang, P., Feng, L., Wang, H., Wu, Z., & Yang, W. 2015. An acetylcholinesterase inhibition biosensor based on a reduced graphene oxide/silver nanocluster/chitosan nanocomposite for detection of organophosphorus pesticides. Analytical Methods, 7(15), pp. 6213-6219. doi:10.1039/c5ay01439e

Review Paper