ANALYSIS OF GEODESICS ON DIFFERENT SURFACES

  • Miroslav Maksimović Faculty of Natural Sciences and Mathematics, University of Priština, Kosovska Mitrovica, Serbia
  • Tanja Jovanović Faculty of Natural Sciences and Mathematics, University of Priština, Kosovska Mitrovica, Serbia
  • Eugen Ljajko Faculty of Natural Sciences and Mathematics, University of Priština, Kosovska Mitrovica, Serbia
  • Milica Ivanović Faculty of Natural Sciences and Mathematics, University of Priština, Kosovska Mitrovica, Serbia
Keywords: Geodesics, u- and v- parameter curve, Developable surface, Minimal surface

Abstract


It is widely known that some surfaces contain special curves as a geodesics, while a lots of geodesics on surface have complicated shapes. Goal of this research is to find on what surfaces are u- and v- parameter curves geodesics. Developable surfaces that contain a given plane curve as a geodesic are studied in the article, whereas the plane curve is also an initial u-parameter curve on that surface. Parametric equations of the minimal surfaces that contain an epicycloid as a geodesic are also given. Visualization of geodesics was done in  Mathematica.

References

Abdel-All, N. H., & Abdel-Galil, E. I. 2013. Numerical treatment of geodesic differential equations on a surface in R^3. International Mathematical Forum, 8, pp. 15-29. doi:10.12988/imf.2013.13003

Do-Carmo, M. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.

Abbena, E., Salamon, S., & Gray, A. 2006. Modern differential geometry of curves and surfaces with Mathematica.Boca Raton: Chapman and Hall CRC. 3rd ed.

Khuangsatung, W. C. P. 2012. Some geodesics in open surfaces classified by Clairauts relation, World Academy of Science. Engineering and Technology, 6(9), pp. 1360-1364.

Lewis, J. 2002. Geodesics Using Mathematica. Rose-Hulman Undergraduate Mathematics Journal, 3(1).

Pressley, A. 2010. Elementary Differential Geometry. London: Springer Science and Business Media LLC. doi:10.1007/978-1-84882-891-9

Toponogov, V. 2006. Differential geometry of curves and surfaces. Birkhauser: Boston.

Published
2020/06/30
Section
Original Scientific Paper