NOVEL 4-FERROCENYL-8-(PHENYLTHIO)-1,2,3,4-TETRAHYDROQUINOLINE: DESIGN, SYNTHESIS AND SPECTRAL CHARACTERIZATION

  • Aleksandra Minić Faculty of Technical Sciences, University of Priština, Kneza Miloša 7, 38220 Kosovska Mitrovica, Serbia
  • Jovana Bugarinović Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
  • Marko Pešić Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
  • Danijela Ilić Komatina Faculty of Technical Sciences, University of Priština, Kneza Miloša 7, 38220 Kosovska Mitrovica, Serbia
Keywords: Tetrahydroquinoline ring, Ferrocene, Intramolecular cyclization, α-Ferrocenyl carbocation, Spectral characterization,

Abstract


Herein, we report design, synthesis and spectral characterization of novel 4-ferrocenyl-8-(phenylthio)-1,2,3,4-tetrahydroquinoline. Desired synthesis was achieved in three reaction steps, with a good overall yield (67%). First step included aza-Michael addition of 2-(phenylthio)aniline to 1-ferrocenylpropenone, subsequently, the obtained ketone was smoothly reduced to the corresponding 1,3-amino alcohol. The final step was an intramolecular cyclization prompted by acetic acid, proceeding via corresponding α-ferrocenyl carbocation. The synthesized compounds have been isolated pure, and their structure have been undoubtedly confirmed by standard spectral techniques (1H NMR, 13C NMR, IR and elemental analyses).


References

Biot, C., Castro, W., Botte, C. Y., & Navarro, M. 2012. The therapeutic potential of metal-based antimalarial agents: Implications for the mechanism of action. Dalton Transactions, 41, pp. 6335-6349. doi.10.1039/C2DT12247B

Bleiholder, C., Rominger, F., & Gleiter, R. 2009. α-Metallocenylmethylium Ions and Their Isoelectronic Congeners: A Comparison Based on DFT Calculations. Organometallics, 28, pp. 1014-1017. doi. 10.1021/om800573u

Dai, Z., Ni, J., Huang, X., Lu, G., & Bao, J. 2007. Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix. Bioelectrochemistry, 70, pp 250-256. doi.org/10.1016/j.bioelechem.2006.09.009

Damljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajilov-Krstev, M. T., Radulović, N. & Vukićević, R. D. 2011. Antibacterial 3-(arylamino)-1-ferrocenylpropan-1-ones: Synthesis, spectral, electrochemical and structural characterization. Journal of Organometallic Chemistry, 696, pp. 3703-3713. doi.org/10.1016/j.jorganchem.2011.08.016

Eicher, T., Hauptmann, S., & Speicher, A. 2003. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications. Wiiey-VCH Veriag. 2nd ed., doi.10.1002/352760183X

Gambino, D., & Otero, L. 2012. Perspectives on what ruthenium-based compounds could offer in the development of potential antiparasitic drugs. Inorganica Chimica Acta, 393, pp. 103–114. doi.10.1016/j.ica.2012.05.028

Houlton, A., Roberts, R. M. G., & Silver, J. 1991. Studies on the anti-tumour activity of some iron sandwich compounds. Journal of Organometallic Chemistry, 418, pp. 107-112. doi.org/10.1016/0022-328X(91)86350-Y

Jaouen, G. 2006. Bioorganometallics: Biomolecules, Labeling, Medicine. Weinheim, FRG: John Wiley. doi:10.1002/3527607692

Kelland, L. 2007. The resurgence of platinum-based cancer chemotherapy. Nature Reviews Cancer, 7(8), pp. 573-584. doi:10.1038/nrc2167

Kowalski, K. 2018. Recent developments in the chemistry of ferrocenyl secondary natural product conjugates. Coordination Chemistry Reviews, 366, pp. 91-108. doi:10.1016/j.ccr.2018.04.008

Köpf‐Maier, P., Köpf, H., & Neuse, E. W. 1984. Ferrocenium Salts-The First Antineoplastic Iron Compounds. Angewandte Chemie International Edition, in English, 23, pp. 456-457. doi.org/10.1002/anie.198404561

Madrid, P. B., Liou, A. P., Derisi, J. L., & Guy, R. K. 2006. Incorporation of an Intramolecular Hydrogen-Bonding Motif in the Side Chain of 4-Aminoquinolines Enhances Activity against Drug-Resistant P. Falciparum. Journal of Medicinal Chemistry, 49, pp. 4535-4543. doi.10.1021/jm0600951

Malisa, A. L., Pearce, R. J., Mutayoba, B. M., Abdullah, S., Mshinda, H., Kachur, P. S., Bloland, P. & Roper, C. 2011. The evolution of pyrimethamine resistant dhfr in Plasmodium falciparum of south-eastern Tanzania: comparing selection under SP alone vs SP+artesunate combination. Malaria Journal, 10(317), pages 13. doi.10.1186/1475-2875-10-317

Minić, A., Bugarinović, J., Ilić-Komatina, D., Bogdanović, G. A., Damljanović, I., & Stevanović, D. 2018. Synthesis of novel ferrocene-containing 1, 3-thiazinan-2-imines: One-pot reaction promoted by ultrasound irradiation. Tetrahedron Letters, 59, pp. 3499-3502. doi. 10.1016/j.tetlet.2018.08.029

Minić, A., Stevanović, D., Damljanović, I., Pejović, A., Vukićević, M., Bogdanović, G. A., Radulović, N. & Vukićević, R. D. 2015. Synthesis of ferrocene-containing six-membered cyclic ureas via α-ferrocenyl carbocations. RSC Advances, 5, pp. 24915-24919. doi. 10.1039/C5RA01383F

Minić, A., Stevanović, D., Vukićević, M., Bogdanović, G. A., D'hooghe, M., Radulović, N., & Vukićević, R. D. 2017. Synthesis of novel 4-ferrocenyl-1, 2, 3, 4-tetrahydroquinolines and 4-ferrocenylquinolines via α-ferrocenyl carbenium ions as key intermediates. Tetrahedron, 73, pp 6268-6274. doi. 10.1016/j.tet.2017.09.014

N'da, D., & Smith, P. 2014. Synthesis, in vitro antiplasmodial and antiproliferative activities of a series of quinoline-ferrocene hybrids. Medicinal Chemistry Research, 23, pp. 1214-1224. doi.org/10.1007/s00044-013-0748-4

Pejović, A., Stevanović, D., Damljanović, I., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajilov-Krstev, M. T., Radulović, N. & Vukićević, R. D. 2012. Ultrasound‐assisted synthesis of 3‐(arylamino)‐1‐ferrocenylpropan‐1‐ones. Helvetica Chimica Acta, 95, pp. 1425-1441. doi.org/10.1002/hlca.201200009

Pejović, A., Danneels, B., Desmet, T., Cham, B. T., Nguyen, T., Radulović, N. S., Vukićević, R. D., & D'hooghe, M. 2015. Synthesis and Antimicrobial/Cytotoxic Assessment of Ferrocenyl Oxazinanes, Oxazinan-2-ones, and Tetrahydropyrimidin-2-ones. Synlett, p. 1195-1200. doi. /s-0034-1380348

Salas, P. F., Herrmann, C., & Orvig, C. 2013. Metalloantimalarials. Chemical Reviews, 113, pp. 3450-3492. doi.10.1021/cr3001252

Supan, C., Mombo-Ngoma, G., Dal-Bianco, M. P., Salazar, C. L. O., Issifou, S., Mazuir, F., Filali-Ansary, A., Biot, C., Ter-Minassian, D., Ramharter, M., Kremsner, P. G. & Lell, B. 2012. Pharmacokinetics of Ferroquine, a Novel 4-Aminoquinoline. In Asymptomatic Carriers of Plasmodium falciparum Infections. Antimicrobial Agents and Chemotherapy. 56, pp. 3165–3173. doi. 10.1128/AAC.05359-11

Sridharan, V., Suryavanshi, P. A., & Menéndez, J. C. 2011. Advances in the Chemistry of Tetrahydroquinolines. Chemical Reviews, 111(11) p.p. 7157-7259. doi.10.1021/cr100307m

Taylor, A. P., Robinson, R. P., Fobian, Y. M., Blakemore, D.C., Jones, L. H., & Fadeyi, O. 2016. Modern advances in heterocyclic chemistry in drug discovery. Organic and Biomolecular Chemistry, 14, pp. 6611-6637. doi.10.1039/C6OB00936K

Togni, A. 1996. Planar-Chiral Ferrocenes: Synthetic Methods and Applications. Angewandte Chemie International Edition in English, 35(1314), pp. 1475-1477. doi:10.1002/anie.199614751

Published
2019/05/20
Section
Original Scientific Paper