• Ivana Matović-Purić Medical School, Čačak, Serbia
  • Tatjana Jakšić University of Priština, Faculty of Sciences and Mathematics, Kosovska Mitrovica, Serbia
  • Tatjana Mihajilov-Krstev University of Niš, Faculty of Sciences and Mathematics, Niš, Serbia
  • Predrag Vasić University of Priština, Faculty of Sciences and Mathematics, Kosovska Mitrovica, Serbia
Keywords: Aspergillus niger, Mucor plumbeus, Trichoderma harzianum, Waste waters, Detergent, Alkaline invertase, Alkaline phosphatase


Due to their diverse metabolic potential, many filamentous fungi have a great ability for degradation of different waste substances. The present research was aimed to investigate ability of fungi Mucor plumbeus, Aspergillus niger and Trichoderma harzianum, isolated from sewer and industrial waste water, to conduct degradation of high concentrations of commercial detergent (0.3%). Within enzyme extracts of samples taken during period of 3–16 days, activity of alkaline invertase and alkaline phosphatase was followe spectrophotometrically at room temperature. Obtained results proved that all examined fungi affected degradation of detergent. Quality (inhibition/stimulation) and quantity of action of detergent on activity of investigated enzymes depended on fungal species and incubation period. The highest inhibiting effect of detergent was recorded on 9th day of incubation in samples of T. harzianum and A. niger, while its most obvious stimulating effect was noticed on 3rd day of incubation in samples of T. harzianum and M. plumbeus. Investigated fungi can be used for purification of waste water containing high concentrations of detergent.



Author Biographies

Tatjana Jakšić, University of Priština, Faculty of Sciences and Mathematics, Kosovska Mitrovica, Serbia

Department of Biology

Predrag Vasić, University of Priština, Faculty of Sciences and Mathematics, Kosovska Mitrovica, Serbia

Department of Biology


Abu-Zreig, M., Rudra, R. P., & Dickinson, W. T. 2003. Effect of Application of Surfactants on Hydraulic Properties of Soils. Biosystems Engineering, 84(3), pp. 363-372. doi:10.1016/s1537-5110(02)00244-1

Ashokkumar, B., Kayalvizhi, N., & Gunasekaran, P. 2001. Optimization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochemistry, 37(4), pp. 331-338. doi:10.1016/s0032-9592(01)00204-7

Brookman, J. L., & Denning, D. W. 2000. Molecular genetics in Aspergillus fumigatus. Current Opinion in Microbiology, 3(5), pp. 468-474. doi:10.1016/s1369-5274(00)00124-7

Buvaneswari, S., Damodarkumar, S., & Murugesan, S. 2013. Bioremediation studies on sugar-mill effluent by selected fungal species. International Journal of Current Microbiology and Applied Sciences, 2, pp. 50-58.

Cavalli, L. 2004. Environmental impact, surfactant science series. Part B. In U. Zoller Ed., Handbook of Detergents. New York: Marcel Dekker, 121, pp. 373-427.

Chaturvedi, V., & Kumar, A. 2010. Toxicity of sodium dodecyl sulfates in fishes and animals. International Journal of Applied Biology and Pharmaceutical Technology, 1, pp. 630-633.

Crewther, W., & Lennox, F. 1953. Enzymes of Aspergillus Oryzae III. The Sequence of Appearance and Some Properties of the Enzymes Liberated During Growth. Australian Journal of Biological Sciences, 6(3), p. 410. doi:10.1071/bi9530410

Gillespie, J. M., Jermyn, M. A., & Woods, E. F. 1952. Multiple Nature of the Enzymes of Aspergillus Oryzæ and of Horse-Radish: Enzymes of Aspergillus oryzae. Nature, 169(4299), pp. 487-488. doi:10.1038/169487a0

Guimarães, L. H. S., Somera, A. F., Terenzi, H. F., Polizeli, M. d. T. d., & Jorge, J. A. 2009. Production of β-fructofuranosidases by Aspergillus niveus using agroindustrial residues as carbon sources: Characterization of an intracellular enzyme accumulated in the presence of glucose. Process Biochemistry, 44(2), pp. 237-241. doi:10.1016/j.procbio.2008.10.011

Heinonen, J. K., & Lahti, R. J. 1981. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytical Biochemistry, 113(2), pp. 313-317. doi:10.1016/0003-2697(81)90082-8

Kamiya, M., Judson, H., Okazaki, Y., Kusakabe, M., Muramatsu, M., Takada, S., Takagi, N., Arima, T., Wake, N., Kamimura, K., Satomura, K., Hermann, R., Bonthron, D. T. & Hayashizaki, Y. 2000. The cell cycle control gene ZAC/PLAGL1 is imprinted--a strong candidate gene for transient neonatal diabetes. Human Molecular Genetics, 9(3), pp. 453-460. doi:10.1093/hmg/9.3.453

Koffi, D., Faule, B., Gonnety, J., Bédikou, M., Kouamé, L., Zoro, I., & Niamké, S. 2010. Biochemical characterization of phosphatase, β-galactosidase and α-mannosidase activities of seeds of an oleaginous cucurbit: Lagenaria siceraria (Molina) Standl blocky-fruited cultivar. Sciences and Nature, 7(2). doi:10.4314/scinat.v7i2.59966

Kumar, M., Trivedi, S. P., Misra, A., & Sharma, S. 2007. Histopathological changes in testis of the freshwater fish Heteropneustes fossilis (Bloch) expos to linear alkyl benzene sulphonate (LAS). Journal of Environmental Bioogy, 28, pp. 679-684.

Ojo, O. A., & Oso, B. A. 2008. Isolation and characterization of synthetic detergent-degraders from waste water. African Journal of Biotechnology, 7, pp. 3753-3760.

Poonawalla, F. M., Patel, K. L., & Iyengar, M. R. S. 1965. Invertase production by Penicillium chrysogenum and other fungi in submerged fermentation. Applied and Environmental Microbiology, 13, pp. 749-754.

Raimbault, M. 1981. Fermentation en milieu solide: Croissance de champignons filamenteux sur substrats amylacés. Paris: Orstom. Série Travaux et Documents.

Raimbault, M. 1998. General and microbiological aspects of solid substrate fermentation. Electronic Journal of Biotechnology, 1(2), pp. 174-188. doi:10.2225/vol1-issue3-fulltext-9

Raper, K. B., & Fennell, D. I. 1965. The genus Aspergillus. Baltimore: William and Wilkins.

Saucedo-Castañeda, G., Lonsane, B. K., Navarro, J. M., Rogssos, S., & Raimbault, M. 1992. Potential of using a simple fermenter for biomass built up, starch hydrolysis and ethanol production: Solid state fermentation system involving Schwanniomyces castellii. Applied Biochemistry and Biotechnology, 36(1), pp. 47-61. doi:10.1007/bf02950774

Saucedo-Castaneda, G., Lonsane, B. K., Krishnaiah, M. M., Navarro, J. M., Roussos, S., & M. Raimbault, 1992. Maintenance of heat and water balances as a scale-up criterion for the production of ethanol by schwanniomyces castellii in a solid state fermentation system. Process Biochemistry, 27(2), pp. 97-107. doi:10.1016/0032-9592(92)80016-v

Schmidt, G., Seraidarian, K., Greenbaum, L. M., Hickey, M. D., & Thannhauser, S. J. 1956. The effects of certain nutritional conditions on the formation of purines and of ribonucleic acid in baker's yeast. Biochimica et Biophysica Acta, 20, pp. 135-149. doi:10.1016/0006-3002(56)90272-4

Stojanović, J. 2007. Praktikum iz biohemije. Kragujevac: Prirodno-matematički fakultet.

Stojanović, J., Jakovljević, V., Matović, I., Mijušković, Z., & Nedeljković, T. 2010. The influence of detergents, sodium tripoly-phosphates and ethoxyled oleyl-cetyl alcohol on metabolism of the fungi Penicillium verrucosum peyronel. Acta veterinaria, 60(1), pp. 67-77. doi:10.2298/avb1001067s

Sumner, J. B., & Howell, S. F. 1935. A method for determination of saccharase activity. The Journal of Biological Chemistry, 108, pp. 51-54.

Vainstein, M. H., & Peberdy, J. F. 1991. Regulation of invertase in Aspergillus nidulans: effect of different carbon sources. Journal of General Microbiology, 137(2), pp. 315-321. doi:10.1099/00221287-137-2-315

Ying, G. 2006. Fate, behavior and effects of surfactants and their degradation products in the environment. Environment International, 32(3), pp. 417-431. doi:10.1016/j.envint.2005.07.004

Original Scientific Paper