STARK BROADENING OF Tb III SPECTRAL LINES ORIGINATING FROM 6s-6p TRANSITIONS

  • Milan S. Dimitrijević 1. Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia; 2. Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-92190, Meudon, France
Keywords: Stark broadening, Spectral lines, Line profiles, Tb III

Abstract


Stark full widths at half maximum (FWHM) for 26 6s-6p transitions in Tb III spectrum have been calculated for electron density of 1017 cm-3 within a temperature range of 5 000 K to 80 000 K, by using the simplified modified semiempirical (SMSE) method. The results obtained are used for the consideration of Strak width regularities within the investigated transition array.

References

Cowley, C. R., Ryabchikova, T., Kupka, F., Bord, D. J., Mathys, G., & Bidelman, W. P. 2000. Abundances in Przybylski’s star. Monthly Notices of the Royal Astronomical Society, 317, pp. 299-309. doi.org/10.1046/j.1365-8711.2000.03578.x

Dimitrijević, M. S. 2019. Stark broadening data for spectral lines of rare-earth elements: Example of Tb II and Tb IV. Contrib. Astron. Obs. Skalnaté Pleso, 50, pp. 122-127. doi: 10.31577/caosp.2020.50.1.122

Dimitrijević, M. S., & Konjević, N. 1987. Simple estimates for Stark broadening of ion lines in stellar plasma. Astronomy and Astrophysics, 172, pp. 345-349.

Dubernet, M. L., Antony, B. K., Ba, Y. A., Babikov, Yu. L., Bartschat, K., Boudon, V., ... Zwölf, C. M. 2016. The virtual atomic and molecular data centre (VAMDC) consortium. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(7), 074003. doi: 10.1088/0953-4075/49/7/074003

Dubernet, M. L., Boudon, V., Culhane, J. L., Dimitrijević, M. S., Fazliev, A. Z., Joblin, C., ... Zeippen, C. J. 2010. Virtual atomic and molecular data centre. Journal of Quantitative Spectroscopy & Radiative Transfer, 111(15), pp. 2151-2159. doi.org/10.1016/j.jqsrt.2010.05.004

Elkin, V. G., Kurtz, D. W., & Mathys, G. 2015. Time resolved spectroscopy of the cool Ap star HD 213637. Monthly Notices of the Royal Astronomical Society, 446, pp. 4126-4131. doi.org/10.1093/mnras/stu2406

Kramida, A., Ralchenko, Yu., Reader, J., & -NIST ASD Team 2020, NIST Atomic Spectra Database. Gaithersburg, MD: National Institute of Standards and Technology. (ver. 5.5.1), Retrived from https://physics.nist.gov/asd, 2020, 1st of April.

Martin, W. C., Zalubas, R., & Hagan, L. 1978. Atomic Energy Levels: The Rare-Earth Elements. Nat. Stand. Ref. Data Ser., NSRDS-NBS 60, pp. 1-422.

Rixon, G., Dubernet, M. L., Piskunov, N., Walton, N., Mason, N., Le Sidaner, P., ... Zeippen, C. J. 2011. VAMDC—The Virtual Atomic and Molecular Data Centre—A New Way to Disseminate Atomic and Molecular Data—VAMDC Level 1 Release. AIP Conference Proceedings, 1344, pp. 107-115.

Sachkov, M., Kochukov, O., Ryabchikova, T., Leone, F., Bagnulo, S., & Weiss, W. W. 2008. Spectroscopic study of pulsations in the atmosphere of roAp star 10 Aql. Contrib. Astron. Obs. Skalnaté Pleso, 38, pp. 323-328.

Sahal-Bréchot, S., Dimitrijević, M. S., & Moreau, N. 2020. STARK-B database. Observatory of Paris / LERMA and Astronomical Observatory of Belgrade. Retrieved from http://starkb.obspm.fr, 2020 May 1st.

Sahal-Bréchot, S., Dimitrijević, M. S., Moreau, N., & Ben Nessib, N. 2015. The STARK-B database VAMDC node: a repository for spectral line broadening and shifts due to collisions with charged particles. Physica Scripta, 50, 054008.

Siqueira Mello, C., Hill, V., Barbuy, B., Spite, M., Spite, F., Beers, T. C., Ca_au, E., Bonifacio, P., Cayrel, R., François, P., Schatz, H., & Wanajo, S. 2014. High-resolution abundance analysis of very metal-poor r-I stars. A&A, 565, A93.

Wiese, W.L., & Konjević, N. 1982. Regularities and similarities in plasma broadened spectral line widths (Stark widths). Journal of Quantitative Spectroscopy and Radiative Transfer, 28, pp. 185-198.

Published
2020/07/01
Section
Original Scientific Paper