ON THE STARK BROADENING OF Os II SPECTRAL LINES

  • Milan S. Dimitrijević 1. Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia; 2. Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-92190, Meudon, France
Keywords: Stark broadening, Spectral lines, Line profiles, Os II

Abstract


Stark broadening parameters, full widths at half maximum (FWHM) and shifts for 13 Os II lines have been calculated. The plasma parameters are: electron density of 1017 cm-3 and temperatures from 5 000 K to 80 000 K. Calculations have been performed with the simplified modified semiempirical (SMSE) approach. The results are also used for the consideration of Strak width and shift regularities within the Os II 6s6D-6p6Do multiplet.

References

Beauchamp, A., Wesemael, F., & Bergeron, P. 1997. Spectroscopic Studies of DB White Dwarfs: Improved Stark Profiles for Optical Transitions of Neutral Helium, Astrophysical Journal Supplement, 108(2), pp. 559-573.

Bord, D. J., & Davidson, J. P. 1982. An application of the method of wavelength coincidence statistics to the ultraviolet spectrum of Kappa Cancri. Astrophysical Journal, 258, pp. 674-682.

Brandi, E., & Jaschek, M. 1970. Heavy elements in Ap stars. Publications of Astronomical Society of Pacific, 82, pp. 847-850.

Castelli, F., & Bonifacio, P. 1990. A computed spectrum for the normal star IOTA Herculis (B3 IV) in the region 122.8-195.0 nm. Astronomy and Astrophysics Supplement Series, 84, pp. 259-375.

Castelli, F., & Hubrig, S. 2004. A spectroscopic atlas of the HgMn star HD 175640 (B9 V) λλ 3040-10 000 Å. Astronomy and Astrophysics, 425, pp. 263-270. doi.org/10.1051/0004-6361:20041011

Cowley, C. R. 1987. Platinum and bismuth in HR 465. Observatory, 107, pp. 188-194.

Cowley, C. R., Hartoog, M. R., Aller, M. F., & Cowley, A. P. 1973. Abundances of trace elements in HR465: Evidence for the rprocess. Astrophysical Journal, 183, pp. 127-131.

Cowley, C. R., Hubrig, S., González, G. F., & Nuñez, N. 2006. HD 65949: the highest known mercury excess of any CP star?. Astronomy and Astrophysics, 455, pp. L21-L24. doi.org/10.1051/0004-6361:20065799

Csillag, L. & Dimitrijević, M. S. 2004, On the Stark broadening of the 537.8 nm and 441.6 nm Cd+ lines excited in a hollow cathode laser discharge, Applied Physics B: Lasers and Optics, 78 (2), pp. 221-223. doi.org/10.1007/s00340-003-1368-3

Dimitrijević, M. S., & Konjević, N. 1987. Simple estimates for Stark broadening of ion lines in stellar plasma. Astronomy and Astrophysics, 172, pp. 345-349.

Dimitrijević, M. S. & Sahal-Bréchot, S. 2014. On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach, Atoms, 2, pp. 357-377. doi.org/10.3390/atoms2030357

Dubernet, M. L., Ba, Y. A., Delahaye, F., Dimitrijević, M. S., Doronin, M., ... & Gagarin, S. V. 2016. The virtual atomic and molecular data centre (VAMDC) consortium. Journal of Physics B, Atomic, Molecular and Optical Physics, 49(7), 18. doi:101088/0953-4075/49/7/074003

Dubernet, M. L., Boudon, V., Culhane, J. L., Dimitrijević, M.S., Fazliev, A.Z., Joblin, C., ... & Zeippen, C.J. 2010. Virtual atomic and molecular data centre. Journal of Quantitative Spectroscopy & Radiative Transfer, 111(15), pp. 2151-2159. doi.org/10.1016/j.jqsrt.2010.05.004

Griem, H. R. 1974, Spectral line broadening by plasmas (New York.: Academic Press, Inc.)

Griem, H. R. 1992, Plasma spectroscopy in inertial confinement fusion and soft X-ray laser research, Physics of Fluids, 4(7), pp. 2346-2361.

Hartoog, M. R., Cowley, C. R., & Cowley, A. P. 1973. The application of wavelength coincidence statistics to line identification: HR 465 and HR 7575, Astrophysical Journal, 182, pp. 847-858.

Hoffman, J., Szymanski, Z., & Azharonok, V. 2006. Plasma Plume Induced During LaserWelding of Magnesium Alloys, AIP Conference Proceedings, 812, pp. 469-472. DOI: 10.1063/1.2168887

Ivarsson, S., Wahlgren, G. M., Dai, Z., Lundberg, H., & Leckrone, D. S. 2004. Constraining the very heavy elemental abundance peak in the chemically peculiar star Chi Lupi, with new atomic data for Os II and Ir II, Astronomy and Astrophysics, 425(1), pp. 353-360. doi.org/10.1051/0004-6361:20040298

Konjević, N. 1999. Plasma broadening and shifting of nonhydrogenic spectral lines: present status and applications, Physics Reports, 316 (6), pp. 339-401.

Kramida, A., Ralchenko, Yu., Reader, J.,& -NIST ASD Team 2020. NIST Atomic Spectra Database. Gaithersburg, MD: National Institute of Standards and Technology. (ver. 5.5.1), Retrived from https://physics.nist.gov/asd, 2020, 1st of April.

Kuchowicz, B. 1973. The peculiar A Stars and tnhe Origin of the Heaviest Chemical Elements. Quarterly Journall of the Royal Astronomical Society, 14, pp. 121-140.

Milovanović, N., Dimitrijević, M. S., Popović, L. Č. & Simić, Z. 2004, Importance of collisions with charged particles for stellar UV line shapes: Cd III, Astronomy and Astrophysics, 417(1), pp. 375-380. doi.org/10.1051/0004-6361:20034162

Moore, C. E. 1971. Atomic Energy Levels as Derived from the Analysis of Optical Spectra – Molybdenum through Lanthanum and Hafnium through Actinium. Nat. Stand. Ref. Data Ser. 35, Vol. III. Washington: Nat. Bur. Stand. US, pp. 1-245.

Quinet, P., Palmeri, P., Biémont, É., Jorissen, A., Van Eck, S., Svanberg, S., Xu, H. L., & Plez, B. 2006. Transition probabilities and lifetimes in neutral and singly ionized osmium and the Solar osmium abundance. Astronomy and Astrophysics, 448(3), pp. 1207-1216. doi.org/10.1051/0004-6361:20053852

Rixon, G., Dubernet, M. L., Piskunov, N., Walton, N., Mason, N., Le Sidaner, P., ... & Zeippen, C. J. 2011. VAMDC—The Virtual Atomic and Molecular Data Centre—A New Way to Disseminate Atomic and Molecular Data—VAMDC Level 1 Release. AIP Conference Proceedings, 1344, pp. 107-115. doi.org/10.1063/1.3585810

Sahal-Bréchot, S. 1969a. Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma, Astronomy and Astrophysics, 1, pp. 91-123.

Sahal-Bréchot, S. 1969b. Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma (continued), Astronomy and Astrophysics, 2, pp. 322-354.

Sahal-Bréchot, S., Dimitrijević, M. S., & Ben Nessib, N. 2014. Widths and Shifts of Isolated Lines of Neutral and Ionized Atoms Perturbed by Collisions With Electrons and Ions: An Outline of the Semiclassical Perturbation (SCP) Method and of the Approximations Used for the Calculations, Atoms, 2, pp. 225-252. DOI: 10.3390/atoms2020225

Sahal-Bréchot, S., Dimitrijević, M. S., & Moreau, N. 2020. STARK-B database. Observatory of Paris / LERMA and Astronomical Observatory of Belgrade. Retrieved from http://starkb. obspm.fr, 2020 May 1st.

Sahal-Bréchot, S., Dimitrijević, M. S., Moreau, N., & Ben Nessib, N. 2015. The STARK-B database VAMDC node: a repository for spectral line broadening and shifts due to collisions with charged particles. Physica Scripta, 90(5), doi.org/10.1088/0031-8949/90/5/054008

Simić, Z., Dimitrijević, M. S., & Kovačević, A. 2009. Stark broadening of spectral lines in chemically peculiar stars: Te I lines and recent calculations for trace elements, New Astronomy Review, 53(7-10), pp. 246-251. doi.org/10.1016/j.newar.2009.08.005

Simić, Z., Dimitrijević, M. S., Milovanović, N., & Sahal-Bréchot, S. 2005a. Stark broadening of Cd I spectral lines, Astronomy and Astrophysics, 441(1), pp. 391-393. doi.org/10.1051/0004-6361:20052701

Simić, Z., Dimitrijević, M. S., Popović, L. Č., & Dačić, M. 2005b. Stark Broadening of F III Lines in Laboratory and Stellar Plasma, Journal of Applied Spectroscopy, 72(3), pp. 443-446. doi.org/10.1007/s10812-005-0095-4

Simicć, Z., Dimitrijević, M. S., Popović, L. Č., & Dačić, M. 2006. Stark broadening parameters for Cu III, Zn III and Se III lines in laboratory and stellar plasma, New Astronomy, 12(3), pp. 187-191. doi.org/10.1016/j.newast.2006.09.001

Sorge, S., Wierling, A., Röpke, G., Theobald W., Sauerbrey R. & Wilhein, T. 2000. Diagnostics of a laser-induced dense plasma by hydrogen-like carbon spectra, Journal of Physics B: Atomic, Molecular and Optical Physics, 33(16), pp. 2983-3000. doi.org/10.1088/0953-4075/33/16/304

Tanaka, M., Kato, D., Gaigalas, G., & Kawaguchi, K. 2020. Systematic Opacity Calculations for Kilonovae. Monthly Notices of the Royal Astronomical Society, 496, pp. 1369-1392. oi.org/10.1093/mnras/staa1576

Tankosić, D., Popović, L. Č., & Dimitrijević, M. S. 2003. The electron-impact broadening parameters for Co III spectral lines, Astronomy and Astrophysics, 399(2), pp. 795-797. doi.org/10.1051/0004-6361:20021801

Wahlgren, G. M., Leckrone, D. S., Brage, T., Proffitt, C. R., & Johansson, S. 1998. Very Heavy Elements in the HgMn Star Chi Lupi. ASP Conference Series, 143, pp. 330-333.

Wallerstein, G., Vanture, A. D., Jenkins, E. B., & Fuller, G. M. 1995. A search for r-process elements in the Vela supernova remnant. Astrophysical Journal, 449, pp. 688-694.

Wiese, W. L., & Konjević, N. 1982. Regularities and similarities in plasma broadened spectral line widths (Stark widths). Journal of Quantitative Spectroscopy and Radiative Transfer, 28, pp. 185-198.

Wiese, W. L., & Konjević, N. 1992. Regularities in experimental Stark shifts. Journal of Quantitative Spectroscopy and Radiative Transfer, 28, pp. 185-200.

Published
2020/12/14
Section
Original Scientific Paper