COMPARISON OF TRANSITION RATES WITH THE LG (0, 1)* SPIRAL-PHASE MODE FIELD DISTRIBUTION IN THE FRAME OF THREE IONIZATION THEORIES

  • Tatjana B. Miladinović Institute for Information Technologies Kragujevac, University of Kragujevac
  • Nebojša S. Danilović Faculty of Science, University of Kragujevac, Kragujevac, Serbia
Keywords: Tunneling ionization, Transition rate, Radially polarized LG (0, 1)* spiral-phase mode

Abstract


We discussed the tunneling ionization of an Argon atom placed in a strong low-frequency field of Ti: Sapphire laser. The transition rate of the electron obtained with radial polarization LG (0, 1)* spiral-phase mode field distribution included are compared to the basic transition rate. All analyses are given in the frame of the three different ionization theories – Keldysh, PPT, and ADK. We demonstrated that the tunneling transition rate is sensitive to laser polarization and a set field distribution. As well as changes in the azimuthal angle as a parameter on which the given distribution depends.

References

Ahmmed, K. M. T., Grambow, C. & Kietzig, A. M. 2014. Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining.Micromachines, 5(4), pp. 1219-1253. doi.org/10.3390/mi5041219

Ammosov, V. M., Delone, N. B. & Krainov, V. P. 1986. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP, 64(6), pp. 1191-1194.

Bauer, D., 2006. Theory of Laser–Matter Interaction, Max--Planck Institute, Heidelberg.

Boutu, W., Auguste, T., Boyko, O., Sola, I., Balcou, Ph., Binazon, L., Gobert, O., Merdji, H., Valentin, C., Constant, E.,  Mével, E. &  Carré, B. 2011. High-order-harmonic generation in gas with a flat-top laser beam, Phys. Rev. A, 84(6), pp. 063406-6. DOI:10.1103/PhysRevA.84.063406

Calvert, J.,  Xu, H., Palmer, A., Glover, R., Laban, D.,  Tong, X., Kheifets, A., Bartschat, K., Litvinyuk, I., Kielpinski, D. & Sang, R. 2016. The interaction of excited atoms and few-cycle laser pulses. Sci. Rep., 6(1), 34101-1-34101-9. doi.org/10.1038/srep34101

Ciappina, M. F., Peganov, E. E. & Popruzhenko, S. V. 2020. Focal-shape effects on the efficiency of the tunnel-ionization probe for extreme laser intensities. Matter Radiat. Extremes 5(4), pp. 044401-10. doi.org/10.1063/5.0005380

Corkum, P.  B. 1993, Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett., 71(13), pp.1994–1997. doi.org/10.1103/PhysRevLett.71.1994

Delone, N. B. & Krainov, V. P. 2000. Multiphoton processes in atoms: Springer.

Delone, N. B. & Krainov, V. P. 1999. AC Stark shift of atomic energy levels,  Phys. Usp., 42(7), pp. 669–687.
https://doi.org/10.1070/PU1999v042n07ABEH000557

Delone, N. B. & Krainov, V. P. 1998. Tunneling and barrier-suppression ionization of atoms and ions in a laser radiation field. Physics Uspekhi, 41(5), pp. 469-485. doi.org/10.1103/PhysRevLett.83.520

Dorn, R., Quabis, S. & Leuchs, G. 2003. Sharper Focus for a Radially Polarized Light Beam. Phys. Rev. Lett., 91(23), pp. 233901. doi.org/10.1103/PhysRevLett.91.233901

Eberly, J. H. & Javanainen, J. 1988. Above-threshold ionization. Eur. J. Phys., 9(4), pp. 265-275. doi.org/10.1088/0143-0807/9/4/004

Eichmann, U., Nubbemeyer, T., Rottke, H. & Sandner W. 2009. Acceleration of neutral atoms in strong short-pulse laser fields. Nature, 461(7268), pp. 1261–1264. doi.org/10.1038/nature08481

Guo, L., Hu, S., Liu, M., Shu, Z., Liu, X., Li, J., Yang, W., Lu, R., Han, S. & Chen, J. 2019. Accuracy of the semiclassical picture of photoionization in intense laser fields (Source: arXiv:1905.00213)

Ho, Phay J. & Eberly, J. H. 2006. In-Plane Theory of Nonsequential Triple Ionization. Phys. Rev. Lett., 97(8), pp. 083001-4. doi: 10.1103/PhysRevLett.97.083001

Ishkhanyan, A M. & Krainov, V P. 2015. Non-exponential tunneling ionization of atoms by an intense laser field. Laser Phys. Lett., 12(4), 046002 (6pp). DOI: 10.1088/1612-2011/12/4/046002

Keldysh, L. V. 1965. Ionization in the Field of a Strong Electromagnetic Wave. Sov. Phys. JETP, 20, pp. 1307-1314.

Krainov, V. P. & Shokri, B. 1995. Energy and angular distributions of electrons resulting from barrier-suppression ionization of atoms by strong low-frequency radiation. JETP, 80(4), pp. 657-661.

Lai, Y. H., Xu, J., Szafruga, U. B., Talbert, B. K., Gong, X., Zhang, K., Fuest, H., Kling, M. F., Blaga, C. I., Agostini, P. & DiMauro, L. F. 2017. Experimental investigation of strong-field-ionization theories for laser fields from visible to midinfrared frequencies, Phys. Rev. A, 96(6), pp. 063417-10. doi.org/10.1103/PhysRevA.96.063417

Landau, L. D. & Lifshitz, E. M. 1991. Course of Theoretical Physics. Vol. 3: Quantum Mechanics: Non Relativistic Theory: Pergamon, Oxford.

Lappas, D. G. & Van Leeuwen, R. 1998. Electron correlation effects in the double ionization of He. J. Phys. B, 31(6), pp. L249-L256. doi:10.1088/0953-4075/31/6/001

Liu, W.-C., Eberly, J. H., Haan, S. L. & Grobe, R. 1999. Correlation Effects in Two-Electron Model Atoms in Intense Laser Fields. Phys. Rev. Lett., 83(3), pp. 520-523.

Machavariani, G., Davidson, N., Lumer, Y. et al., 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference, Munich, p. 1.

Machavariani, G., Lumer, Y., .Moshe, I. & Jackel, S. 2007. Effect of the spiral phase element on the radial-polarization (0, 1)* LG beam. Opt. Commun., 271, pp. 190-196. doi:10.1016/j.optcom.2006.10.013

Mainfray, G. & Manus, G. 1991. Multiphoton ionization of atoms. Rep. Prog. Phys., 54(10), pp. 1333-1372. doi.org/10.1088/0034-4885/54/10/002

Ooi, C. H. Raymond, Ho, WaiLoon, & Bandrauk, A. D. 2012. Photoionization spectra by intense linear, circular, and elliptic polarized lasers. Phys. Rev. A, 86(2), pp. 023410-6. DOI:10.1103/PhysRevA.86.023410

Ouyang, J., Perrie, W., Allegre, O. J., Heil, T., Jin, Y., Fearon, E., Eckford, D., Edwardson, S. P. & Dearden G. 2015. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring. Opt. Express, 23(10), pp. 12562-12572. DOI:10.1364/OE.23.012562

Panfili, R., Eberly, J. H. & Haan, S. L. 2001. Comparing classical and quantum dynamics of strong-field double ionization. Opt. Express, 8(7), pp. 431-435. doi.org/10.1364/OE.8.000431

Parker, J. S., Doherty, B. J. S., Taylor, K. T., Schultz, K. D., Blaga, C. I. & DiMauro, L. F. 2006. High-Energy Cutoff in the Spectrum of Strong-Field Nonsequential Double Ionization. Phys. Rev. Lett., 96(13), pp. 133001-4. DOI:10.1103/PhysRevLett.96.133001

Parker, J. S., Smyth, E. S. & Taylor, K. T. 1998. Intense-field multiphoton ionization of helium. J. Phys. B, 31(14), pp. L571-L578. doi.org/10.1088/0953-4075/31/14/001

Perelomov, A. M., Popov, V. S. & Terent’ev, M. V. 1966. Ionization of Atoms in an Alternating Electric Field. Sov. Phys. JETP, 23(5), pp. 924-934.

Schafer, K. J., Yang, B., DiMauro, L. F. & Kulander, K. C. 1993. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett., 70(11), pp. 1599-1602. doi.org/10.1103/PhysRevLett.70.1599

Shealya, D. L. & Hoffnagle, J. A. 2005. Beam shaping profiles and propagation, Proceedings SPIE Conf. Laser Beam Shaping VI, (San Diego, California, USA), pp. 5876-13. http://people.cas.uab.edu/~dls/publications/spie5876/spie5876-13-electronic.pdf

Shvetsov-Shilovski, N. I., Lein, M. & Tőkési, K. 2019. Semiclassical two-step model for ionization of the hydrogen molecule by strong laser field. Eur. Phys. J. D, 73(2), pp. 1-8. doi.org/10.1140/epjd/e2018-90527-6

Tokarev, V. N., Lopez, J, .Lazare, S. & Weisbuch, F. 2003. High-aspect-ratio microdrilling of polymers with UV laser ablation: experiment with analytical model, Applied Physics A, 76(3), pp. 385-396. doi.org/10.1007/s00339-002-1511-8

Voronov, G. S. & Delone, N. B. 1966. Many-photon ionization of the xenon atom by ruby laser radiation, Sov. Phys. JETP, 23, pp. 54-58.

Xiong, W. & Chin, S. L. 1991. Tunnel ionization of potassium and xenon atoms in a high-intensity CO2 laser radiation field. Sov. Phys. JETP, 72, pp. 268-271.

Zhang, L. 2010. Intensity spatial profile analysis of a Gaussian laser beam at its waist using an optical fiber system, Chinese Physics Letters, 27(5), pp. 054207-3. DOI:10.1088/0256-307X/27/5/054207

Published
2021/12/22
Section
Original Scientific Paper