ISO CLUSTER CLASSIFIER BY ARCGIS FOR UNSUPERVISED CLASSIFICATION OF THE LANDSAT TM IMAGE OF REYKJAVÍK

  • Polina Lemenkova Schmidt Institute of Physics of the Earth, Russian Academy of Sciences. Department of Natural Disasters, Anthropogenic Hazards and Seismicity of the Earth. Laboratory of Regional Geophysics and Natural Disasters. Moscow, Russian Federation
Keywords: Machine learning, Landsat TM, ArcGIS, Cartography

Abstract


The paper presents the use of the Landsat TM image processed by the ArcGIS Spatial Analyst Tool for environmental mapping of southwestern Iceland, region of Reykjavik.  Iceland is one of the most special Arctic regions with unique flora and landscapes. Its environment is presented by vulnerable ecosystems of highlands where vegetation is affected by climate, human or geologic factors: overgrazing, volcanism, annual temperature change. Therefore, mapping land cover types in Iceland contribute to the nature conservation, sustainable development and environmental monitoring purposes. This paper starts by review of the current trends in remote sensing, the importance of Landsat TM imagery for environmental mapping in general and Iceland in particular, and the requirements of GIS specifically for satellite image analysis. This is followed by the extended methodological workflow supported by illustrative print screens and technical description of data processing in ArcGIS. The data used in this research include Landsat TM image which was captured using GloVis and processed in ArcGIS. The methodology includes a workflow involving several technical steps of raster data processing in ArcGIS: 1) coordinate projecting, 2) panchromatic sharpening, 3) inspection of raster statistics, 4) spectral bands combination, 5) calculations, 6) unsupervised classification, 7) mapping. The classification was done by clustering technique using ISO Cluster algorithm and Maximum Likelihood Classification. This paper finally presents the results of the ISO Cluster application for Landsat TM image processing and concludes final remarks on the perspectives of environmental mapping based on Landsat TM image processing in ArcGIS.The results of the classification present landscapes divided into eight distinct land cover classes: 1) bare soils; 2) shrubs and smaller trees in the river valleys, urban areas including green spaces; 3) water areas; 4) forests including the Reykjanesfólkvangur National reserve; 5) ice-covered areas, glaciers and cloudy regions; 6) ravine valleys with a sparse type of the vegetation: rowan, alder, heathland, wetland; 7) rocks; 8) mixed areas. The final remarks include the discussion on the development of machine learning methods and opportunities of their technical applications in GIS-based analysis and Earth Observation data processing in ArcGIS, including image analysis and classification, mapping and visualization, machine learning and environmental applications for decision making in forestry and sustainable development.

References

Abburu, S. & Golla, S. B. 2015. Satellite Image Classification Methods and Techniques: A Review, International Journal of Computer Applications, 119(8), pp. 20-25. https://doi.org/10.5120/21088-3779

Arnalds, O., Gisladottir, F. & Sigurjonsson, H. 2001. Sandy deserts of Iceland: an overview, Journal of Arid Environments, 47, pp. 359-371. https://doi.org/10.1006/jare.2000.0680

Arnalds, O. & Barkarson, B. H. 2003. Soil erosion and land use policy in Iceland in relation to sheep grazing and government subsidies, Environmental Science & Policy, 6(1), pp. 105-113. https://doi.org/10.1016/S1462-9011(02)00115-6

Arnalds, O. 2004. Volcanic soils of Iceland. Catena 56, pp. 3-20. https://doi.org/10.1016/j.catena.2003.10.002

Arnalds, O. 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences 23(1), pp. 3-21.

Banskota, A., Kayastha, N., Falkowski, M. J., Wulder, M. A., Froese, R. E. & White, J. C. 2014. Forest Monitoring Using Landsat Time Series Data: A Review. Canadian Journal of Remote Sensing, 40, pp. 362-384. https://doi.org/10.1080/07038992.2014.987376

Brombacher, J., Reiche, J., Dijksma, R. & Teuling, A. J. 2020. Near-daily discharge estimation in high latitudes from Sentinel-1 and 2: A case study for the Icelandic Þjórsá river, Remote Sensing of Environment, 241, pp. 111684. https://doi.org/10.1016/j.rse.2020.111684

Cao, Z., Ma, R., Duan, H., Pahlevan, N., Melack, J., Shen, M. & Xue, K. 2020. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes, Remote Sensing of Environment, 248, pp. 111974.

Chowdhury, S., Peddle, D. R., Wulder, M. A., Heckbert, S., Shipman, T. C. & Chao, D. K. 2021. Estimation of land-use/land-cover changes associated with energy footprints and other disturbance agents in the Upper Peace Region of Alberta Canada from 1985 to 2015 using Landsat data, International Journal of Applied Earth Observation and Geoinformation, 94, 102224. https://doi.org/10.1016/j.jag.2020.102224

Flood, N. 2013. Seasonal composite Landsat TM/ETM+ images using the medoid (a multi-dimensional median), Remote Sensing, 5, pp. 6481-6500. https://doi.org/10.3390/rs5126481

Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T., Schmidt, G. L., Dwyer, J. L., Joseph Hughes, M. & Laue, B. 2017. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, pp. 379-390. https://doi.org/10.1016/j.rse.2017.03.026

GEBCO Compilation Group 2020. GEBCO 2020 Grid. https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9

Gerrard, A. J. 1985. Soil erosion and landscape stability in southern Iceland: a tephrochronological approach. 18 pp. In: K.S. Richards, R.R. Arnett, S. Ellis (eds.). Geomorphology and Soils. 1st Ed. London, Routledge https://doi.org/10.4324/9780429320781

Gísladóttir, G. 2001. Ecological Disturbance and Soil Erosion on Grazing Land in Southwest Iceland, Land Degradation. Springer, pp. 109-126. https://doi.org/10.1007/978-94-017-2033-5_7

Goodwin, N. R., Collett, L. J., Denham, R. J., Flood, N. & Tindall, D. 2013. Cloud and cloud shadow screening across Queensland, Australia: an automated method for Landsat TM/ETM+ time series. Remote Sensing of Environment, 134, pp. 50-65. https://doi.org/10.1016/j.rse.2013.02.019

Greipsson, S. 2012. Catastrophic soil erosion in Iceland: impact of long-term climate change, compounded natural disturbances and human driven landuse changes, Catena, 98, pp. 41-54. https://doi.org/10.1016/j.catena.2012.05.015

Healey, S. P., Cohen, W. B., Yang, Z., Brewer, C. K., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Hughes, M. J., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L. & Zhu, Z. 2018. Mapping forest change using stacked generalization: An ensemble approach. Remote Sensing of Environment, 204, 717-728. https://doi.org/10.1016/j.rse.2017.09.029

Herbei, M. & Sala, F. 2016. Classification of Land and Crops Based on Satellite Images Landsat 8: Case Study SD Timisoara, Bulletin UASVM series Agriculture, 73(1), pp. 29-34. https://doi.org/10.15835/buasvmcn-agr:12007

Homer, C. G., Xian, G., Aldridge, C. L., Meyer, D. K., Loveland, T. R. & O’Donnell, M. S. 2015. Forecasting sagebrush ecosystem components and greater sage-grouse habitat for 2050: Learning from past climate patterns and Landsat imagery to predict the future, Ecological Indicators, 55, 131-145. https://doi.org/10.1016/j.ecolind.2015.03.002

Jakobsson, S. P. 1979. Outline of the petrology of Iceland, Jökull, 29, pp. 57-73.

Jakobsson, S. P., Jonasson, K. & Sigurdsson, I. A. 2008. The tree igneous rock series of Iceland, Jökull, 58, pp. 117-138.

Kennedy, R. E., Yang, Z. & Cohen, W. B. 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – Temporal segmentation algorithms, Remote Sensing of Environment, 114, pp. 2897-2910. https://doi.org/10.1016/j.rse.2010.07.008

Klaučo, M., Gregorová, B., Stankov, U., Marković, V. & Lemenkova, P. 2013a. Interpretation of Landscape Values, Typology and Quality Using Methods of Spatial Metrics for Ecological Planning, Environmental and Climate Technologies, October 14, 2013. Riga, Latvia. https://doi.org/10.13140/RG.2.2.23026.96963

Klaučo, M., Gregorová B., Stankov U., Marković V. & Lemenkova P. 2013b. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area, Open Geosciences, 5(1), pp. 28-42. https://doi.org/10.2478/s13533-012-0120-0

Klaučo, M., Gregorová, B., Stankov, U., Marković, V. & Lemenkova, P. 2014. Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia, Ecology and Environmental Protection, Minsk, Belarus, pp. 85-90. https://doi.org/10.6084/m9.figshare.7434200

Klaučo, M., Gregorová, B., Koleda, P., Stankov, U., Marković, V. & Lemenkova, P. 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region, Environmental Engineering and Management Journal, 2(16), pp. 449-458. https://doi.org/10.30638/eemj.2017.045

Kristinsson, H. 1986. A guide to the flowering plants and ferns of Iceland. Reykjavik: Mál og menning. https://doi.org/10.1111/j.1756-1051.1991.tb01794.x

Kristinsson, H. 2008. Íslenskt Plöntutal: Blómplöntur og byrkningar. Fjölrit náttúrufræðistofnunar, 51, pp. 1-58.

Krüger, J. 1994. Glacial processes, sediments, landforms and stratigraphy in the terminus region of Mýrdalsjökull, Iceland. Folia Geographica Danica, 21, pp. 1-233.

Lemenkova, P. 2011. Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. University of Twente, Faculty of Earth Observation and Geoinformation (ITC), Enschede, Netherlands. https://doi.org/10.13140/RG.2.2.16945.22881

Lemenkova, P. 2013a. Monitoring Changes in Agricultural Landscapes of Central Europe, Hungary: Application of ILWIS GIS for Image Processing, Geoinformatics: Theoretical and Applied Aspects, 13–16 May, Ukraine, Kiev. https://doi.org/10.3997/2214-4609.20142479

Lemenkova P 2014a. Opportunities for Classes of Geography in the High School: the Use of ’CORINE’ Project Data, Satellite Images and IDRISI GIS for Geovisualization. In: Perspectives for the Development of Higher Education. Belarus, Grodno, pp. 284-286. https://doi.org/10.6084/m9.figshare.7211933

Lemenkova P. 2014b. Detection of Vegetation Coverage in Urban Agglomeration of Brussels by NDVI Indicator Using eCognition Software and Remote Sensing Measurements. In: GIS and Remote Sensing, November 17–19, 2014, Tsaghkadzor, pp. 112-119. https://doi.org/10.6084/m9.figshare.743421

Lemenkova, P. 2015. Analysis of Landsat NDVI Time Series for Detecting Degradation of Vegetation, Geoecology and Sustainable Use of Mineral Resources. From Science to Practice, Belgorod, Russia, pp. 11-13. https://doi.org/10.6084/m9.figshare.7211795

Lemenkova, P. 2016. Using GIS for Monitoring Lacustrine Ecosystem: a Case Study of Laguna de Gallocanta, Spain. In Conference Proceedings Problems of the Environmental Landscape Planning, pp. 237-240. https://doi.org/10.6084/m9.figshare.7210229

Lemenkova, P. 2019a. Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools, Cartographic Letters, 27(2), pp. 72-89. https://doi.org/10.6084/m9.figshare.11544048

Lemenkova, P. 2019b. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis, GeoScience Engineering, 65(4), pp. 1-22. https://doi.org/10.35180/gse-2019-0020

Lemenkova, P. 2019c. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language, Geodesy and Cartography, 45(2), pp. 57-84. https://doi.org/10.3846/gac.2019.3785

Lemenkova, P. 2019d. Processing oceanographic data by Python libraries NumPy, SciPy and Pandas, Aquatic Research, 2(2), pp. 73-91.

Lemenkova, P. 2020a. GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List, 74(1), pp. 19-39. https://doi.org/10.6084/m9.figshare.12249773

Lemenkova, P. 2020b. Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series, 18(1), pp. 41-60. https://doi.org/10.2478/bgeo-2020-0004

Lemenkova, P. 2020c. Hyperspectral Vegetation Indices Calculated by Qgis Using Landsat Tm Image: a Case Study of Northern Iceland. Advanced Research in Life Sciences, 4(1), pp. 70-78. https://doi.org/10.2478/arls-2020-0021

Lemenkova, P. 2020d. SAGA GIS for information extraction on presence and conditions of vegetation of northern coast of Iceland based on the Landsat TM. Acta Biologica Marisiensis 3(2), pp. 10-21. https://doi.org/10.2478/abmj-2020-0007

Lindh, P., Dahlin, T. & Svensson, M. 2000. Comparisons Between Different Test Methods for Soil Stabilisation, in: GeoEng 2000, pp. 1-7.

Lindh P. 2001. Optimising binder blends for shallow stabilisation of fine-grained soils. In Proceedings of the Institution of Civil Engineers Ground Improvement, 5, pp. 23-34.

Lindh, P. & Winter, M. G. 2003. Sample preparation effects on the compaction properties of Swedish fine-grained tills, Quarterly Journal of Engineering Geology and Hydrogeology, 36, pp. 321-330. https://doi.org/10.1144/1470-9236/03-018

Lindh P 2004. Compaction- and strength properties of stabilised and unstabilised fine-grained tills. PhD Thesis, Lund University, Lund. https://doi.org/10.13140/RG.2.1.1313.6481

Nagol, J. R., Sexton, J. O., Kim, D. H., Anand, A., Morton, D., Vermote, E. & Townshend, J. R. 2015. Bidirectional effects in Landsat reflectance estimates: Is there a problem to solve? ISPRS Journal of Photogrammetry and Remote Sensing, 103, pp. 129-135. https://doi.org/10.1016/j.isprsjprs.2014.09.006

Qiu, S., Lin, Y., Shang, R., Zhang, J., Ma, L., Zhu, Z., Qiu, S., Lin, Y., Shang, R., Zhang, J., Ma, L. & Zhu, Z. 2019. Making landsat time series consistent: evaluating and improving landsat analysis ready data, Remote Sensing, 11, pp. 51.

Robinson, Z. P., Fairchild, I. J. & Russell, A. J. 2008. Hydrogeological implications of glacial landscape evolution at Skeiðarársandur, SE Iceland, Geomorphology, 97, pp. 218-236. https://doi.org/10.1016/j.geomorph.2007.02.044

Russell, A. J., Roberts, M. J., Fay, H., Marren, P. M., Cassidy, N. J., Tweed, F. S. & Harris, T. 2006. Icelandic jökulhlaup impacts: implications for ice-sheet hydrology, sediment transfer and geomorphology, Geomorphology, 75, pp. 33-64. https://doi.org/10.1016/j.geomorph.2005.05.018

Schenke, H. W. & Lemenkova, P. 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See, Hydrographische Nachrichten, 81, pp. 16-21. https://doi.org/10.6084/m9.figshare.7435538

Schowengerdt, R. 2007. Remote Sensing. Models and Methods for Image Processing, 3rd ed., Schowengerdt, R. Academic Press.

Steindórsson, S. 1962. On the age and immigration of the Icelandic flora, Societas Scientiarum Islandica, 35, pp. 5-155.

Suetova I. A., Ushakova L. A. & Lemenkova P. 2005a. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, pp. 138-142. https://doi.org/10.6084/m9.figshare.7435535

Suetova I. A., Ushakova L. A. & Lemenkova P. 2005b. Geoecological Mapping of the Barents Sea Using GIS, International Cartographic Conference, La Coruna Spain. https://doi.org/10.6084/m9.figshare.7435529

Thórhallsdóttir, T. E. 1996. Seasonal and annual dynamics of frozen ground in the central highland of Iceland, Arctic, Antarctic, and Alpine Research, 28, pp. 237-243. https://doi.org/10.2307/1551765

Tomaszkiewicz, M., Abou Najm, M., Beysens, D., Alameddine, I. & El-Fadel, M. 2015. Dew as a sustainable non-conventional water resource: a critical review. Environmental Reviews, 23, pp. 425-442. https://doi.org/10.1139/er-2015-0035

Townshend, J. R., Masek, J. G., Huang, C., Vermote, E. F., Gao, F., Channan, S., Sexton, J. O., Feng, M., Narasimhan, R., Kim, D., Song, K., Song, D., Song, X. P., Noojipady, P., Tan, B., Hansen, M. C., Li, M. & Wolfe, R. E. 2012. Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges, International Journal of Digital Earth, 5, pp. 373-397. https://doi.org/10.1080/17538947.2012.713190

Valjarević, A., Djekić, T., Stevanović, V., Ivanović, R. & Jandziković, B. 2018. GIS Numerical and remote sensing analyses of forest changes in the Toplica region for the period of 1953-2013. Applied Geographym 92, 131-139. https://doi.org/10.1016/j.apgeog.2018.01.016.

Valjarević A, Filipović D, Valjarević D, Milanović M, Milošević S., Živić, N. & Lukić, T. 2020. GIS and remote sensing techniques for the estimation of dew volume in the Republic of Serbia. Meteorological Applications 27(3), e1930. https://doi.org/10.1002/met.1930

Vermote, E., Justice, C., Claverie, M. & Franch, B. 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product, Remote Sensing of Environment, 185, pp. 46-56. https://doi.org/10.1016/j.rse.2016.04.008

Vuollekoski, H., Vogt, M., Sinclair, V. A., Duplissy, J., Järvinen, H., Kyrö, E.-M., Makkonen, R., Petäjä, T., Prisle, N. L., Räisänen, P., Sipilä, M., Ylhäisi, J. & Kulmala, M. 2015. Estimates of global dew collection potential on artificial surfaces. Hydrology and Earth System Science, 19, pp. 601-613, https://doi.org/10.5194/hess-19-601-2015

Wan, N. 2015. Pesticides exposure modeling based on GIS and remote sensing land use data. Applied Geography, 56, pp. 99-106. https://doi.org/10.1016/j.apgeog.2014.11.012.

Wasowicz, P., Pasierbiński, A., Przedpelska-Wasowicz, E.M. & Kristinsson, H. 2014. Distribution Patterns in the Native Vascular Flora of Iceland. PLoS ONE, 9(7), pp. E102916. https://doi.org/10.1371/journal.pone.0102916

Wessel, P. & Smith, W. H. F. 1995. New version of the generic mapping tools released, Eos, Transactions American Geophysical Union, Washington, DC: American Geophysical Union, 76(33), 329. https://doi.org/10.1029/95EO00198

Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S. N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., Schott, J., Thenkabail, P. S., Vermote, E. F., Vogelmann, J., Wulder, M. A. & Wynne, R. 2008. Free access to Landsat imagery, Science, 320, pp. 1011.

Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., Fosnight, E. A., Shaw, J., Masek, J. G. & Roy, D. P. 2016. The global Landsat archive: Status, consolidation, and direction, Remote Sensing of Environment, 185, pp. 271-283. https://doi.org/10.1016/j.rse.2015.11.032

Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J. D., Hostert, P., Hughes, M. J., Huntington, J., Johnson, D. M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N., Scambos, T. A., Schaaf, C., Schott, J. R., Sheng, Y., Storey, J., Vermote, E., Vogelmann, J., White, J. C., & Wynne, R. H. & Zhu, Z. 2019. Current status of Landsat program, science, and applications, Remote Sensing of Environment, 225, pp. 127-147. https://doi.org/10.1016/j.rse.2019.02.015

Zhong, Y. & Zhang, L. 2012. An Adaptive Artificial Immune Network for Supervised Classification of Multi-/Hyperspectral Remote Sensing Imagery. IEEE Transactions on Geoscience and Remote Sensing 50(3), pp. 894-909. https://doi.org/10.1109/TGRS.2011.2162589

Zhu, Z., Wulder, M. A., Roy, D. P., Woodcock, C. E., Hansen, M. C., Radeloff, V. C., Healey, S. P., Schaaf, C., Hostert, P., Strobl, P., Pekel, J. F., Lymburner, L., Pahlevan, N. & Scambos, T. A. 2019. Benefits of the free and open Landsat data policy, Remote Sensing of Environment, 224, pp. 382-385. https://doi.org/10.1016/j.rse.2019.02.016

Published
2021/07/04
Section
Original Scientific Paper