# CURVES ON RULED SURFACES UNDER INFINITESIMAL BENDING

• Marija Najdanović Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica, Serbia
• Miroslav Maksimović Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica, Serbia
• Ljubica Velimirović Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
Keywords: Infinitesimal bending, Curve, Ruled surface, Cylinder, Hyperbolic paraboloid, Helicoid

### Abstract

Infinitesimal bending of curves lying with a given precision on ruled surfaces in 3-dimensional Euclidean space is studied. In particular, the bending of curves on the cylinder, the hyperbolic paraboloid and the helicoid are considered and appropriate bending fields are found. Some examples are graphically presented.

### References

Aleksandrov, A. D. 1936. O beskonechno malyh izgibaniyah neregulyarnyh poverhnostei, Matem. sbornik, 1(43), pp. 307-321.

Alexandrov, V. 2010. New manifestations of the Darboux’s rotation and translation fields of a surface, New Zealand Journal of Mathematics, 40, pp. 59-65.

Belova, O., Mikeš, J. & Sherkuziyev, M. 2021. An Analytical Inflexibility of Surfaces Attached Along a Curve to a Surface Regarding a Point and Plane, Results Math, 76(56). doi:10.1007/s00025-021-01362-0

Efimov, N. 1948. Kachestvennye voprosy teorii deformacii poverhnostei, UMN. 3. 2, pp. 47-158.

Gözütok, U., C˛oban, H. A. & Sağiroğlu, Y. 2020. Ruled surfaces obtained by bending of curves, Turk J Math, 44, pp. 300-306. doi:10.3906/mat-1908-21

Hinterleitner, I., Mikeš, J. & Stránská, J. 2008. Infinitesimal Fplanar transformations, Russian Mathematics, 52(4), pp. 13-18. doi:10.3103/s1066369x08040026

Ivanova-Karatopraklieva, I. & Sabitov, I. K. 1995. Bending of surfaces. Part II, Journal of Mathematical Sciences, 74(3), pp. 997-1043. doi:10.1007/bf02362831

Kauffman, L. H., Velimirović, Lj. S., Najdanović, M. S. & Rančić, S. R. 2019. Infinitesimal bending of knots and energy change. Journal of Knot Theory and Its Ramifications, 28(11), 1940009. doi:10.1142/S0218216519400091

Kon-Fossen, S. E. 1959. Nekotorye voprosy differ. geometrii v celom (Moskva: Fizmatgiz)

Li, Y. & Pei, D. 2016. Evolutes of dual spherical curves for ruled surfaces, Mathematical Methods in the Applied Sciences 39(11), pp. 3005-3015. doi:10.1002/mma.3748

Li, Y., Wang, Z. & Zhao, T. 2021. Geometric Algebra of Singular Ruled Surfaces, Advances in Applied Clifford Algebras, 31(2), pp. 1-19. doi:10.1007/s00006-020-01097-1

Maksimović, M., Velimirović, Lj. & Najdanović, M. 2021. Infinitesimal bending of DNA helices, Turk J Math, 45, pp. 520-528. doi:10.3906/mat-2003-106

Najdanović, M. S., Rančić, S. R., Kauffman, L. H. & Velimirović, Lj. S. 2019. The total curvature of knots under second-order infinitesimal bending, Journal of Knot Theory and Its Ramifications, 28(1), 1950005. doi:10.1142/S0218216519500056

Najdanović, M. S. & Velimirović, Lj. S. 2018. Infinitesimal bending of curves on the ruled surfaces, University thought - Publication in Natural Sciences, 8(1), pp. 46-51. doi:10.5937/univtho8-17403

Najdanović, M. S. & Velimirović, Lj. S. 2017. On the Willmore energy of curves under second order infinitesimal bending, Miskolc Mathematical Notes, 17(2), pp. 979-987. doi:10.18514/mmn.2017.2133

Najdanović, M. 2015. Infinitesimal bending influence on the Willmore energy of curves, Filomat, 29(10), pp. 2411–2419. doi:10.2298/fil1510411n

Rančić, S., Najdanović, M. & Velimirović, Lj. 2019. Total normalcy of knots, Filomat, 33(4), pp. 1259-1266. doi:10.2298/FIL1904259R

Rančić, S., Velimirović, L. & Zlatanović, M. 2009. Curvebend graphical tool for presentation of infinitesimal bending of curves, Filomat, 23(2), pp. 108-116. doi:10.2298/fil0902108r

Rýparová, L. & Mikeš, J. 2019. Infinitesimal Rotary Transformation, Filomat, 33(4), pp. 1153-1157. doi.org/10.2298/FIL1904153R

Vekua, I. 1959. Obobschennye analiticheskie funkcii (Moskva)

Velimirović, Lj. 2001a. Change of geometric magnitudes under infinitesimal bending, Facta universitatis - series: Mechanics, Automatic Control and Robotics, 3(11), pp. 135-148.

Velimirović, Lj. 2001b. Infinitesimal bending of curves, Matematicki bilten Skopje, Makedonija, 25(LI), pp. 25-36.

Published
2021/07/02
Issue
Section
Original Scientific Paper