CURVES ON RULED SURFACES UNDER INFINITESIMAL BENDING
Abstract
Infinitesimal bending of curves lying with a given precision on ruled surfaces in 3-dimensional Euclidean space is studied. In particular, the bending of curves on the cylinder, the hyperbolic paraboloid and the helicoid are considered and appropriate bending fields are found. Some examples are graphically presented.
References
Aleksandrov, A. D. 1936. O beskonechno malyh izgibaniyah neregulyarnyh poverhnostei, Matem. sbornik, 1(43), pp. 307-321.
Alexandrov, V. 2010. New manifestations of the Darboux’s rotation and translation fields of a surface, New Zealand Journal of Mathematics, 40, pp. 59-65.
Belova, O., Mikeš, J. & Sherkuziyev, M. 2021. An Analytical Inflexibility of Surfaces Attached Along a Curve to a Surface Regarding a Point and Plane, Results Math, 76(56). doi:10.1007/s00025-021-01362-0
Efimov, N. 1948. Kachestvennye voprosy teorii deformacii poverhnostei, UMN. 3. 2, pp. 47-158.
Gözütok, U., C˛oban, H. A. & Sağiroğlu, Y. 2020. Ruled surfaces obtained by bending of curves, Turk J Math, 44, pp. 300-306. doi:10.3906/mat-1908-21
Hinterleitner, I., Mikeš, J. & Stránská, J. 2008. Infinitesimal Fplanar transformations, Russian Mathematics, 52(4), pp. 13-18. doi:10.3103/s1066369x08040026
Ivanova-Karatopraklieva, I. & Sabitov, I. K. 1995. Bending of surfaces. Part II, Journal of Mathematical Sciences, 74(3), pp. 997-1043. doi:10.1007/bf02362831
Kauffman, L. H., Velimirović, Lj. S., Najdanović, M. S. & Rančić, S. R. 2019. Infinitesimal bending of knots and energy change. Journal of Knot Theory and Its Ramifications, 28(11), 1940009. doi:10.1142/S0218216519400091
Kon-Fossen, S. E. 1959. Nekotorye voprosy differ. geometrii v celom (Moskva: Fizmatgiz)
Li, Y. & Pei, D. 2016. Evolutes of dual spherical curves for ruled surfaces, Mathematical Methods in the Applied Sciences 39(11), pp. 3005-3015. doi:10.1002/mma.3748
Li, Y., Wang, Z. & Zhao, T. 2021. Geometric Algebra of Singular Ruled Surfaces, Advances in Applied Clifford Algebras, 31(2), pp. 1-19. doi:10.1007/s00006-020-01097-1
Maksimović, M., Velimirović, Lj. & Najdanović, M. 2021. Infinitesimal bending of DNA helices, Turk J Math, 45, pp. 520-528. doi:10.3906/mat-2003-106
Najdanović, M. S., Rančić, S. R., Kauffman, L. H. & Velimirović, Lj. S. 2019. The total curvature of knots under second-order infinitesimal bending, Journal of Knot Theory and Its Ramifications, 28(1), 1950005. doi:10.1142/S0218216519500056
Najdanović, M. S. & Velimirović, Lj. S. 2018. Infinitesimal bending of curves on the ruled surfaces, University thought - Publication in Natural Sciences, 8(1), pp. 46-51. doi:10.5937/univtho8-17403
Najdanović, M. S. & Velimirović, Lj. S. 2017. On the Willmore energy of curves under second order infinitesimal bending, Miskolc Mathematical Notes, 17(2), pp. 979-987. doi:10.18514/mmn.2017.2133
Najdanović, M. 2015. Infinitesimal bending influence on the Willmore energy of curves, Filomat, 29(10), pp. 2411–2419. doi:10.2298/fil1510411n
Rančić, S., Najdanović, M. & Velimirović, Lj. 2019. Total normalcy of knots, Filomat, 33(4), pp. 1259-1266. doi:10.2298/FIL1904259R
Rančić, S., Velimirović, L. & Zlatanović, M. 2009. Curvebend graphical tool for presentation of infinitesimal bending of curves, Filomat, 23(2), pp. 108-116. doi:10.2298/fil0902108r
Rýparová, L. & Mikeš, J. 2019. Infinitesimal Rotary Transformation, Filomat, 33(4), pp. 1153-1157. doi.org/10.2298/FIL1904153R
Vekua, I. 1959. Obobschennye analiticheskie funkcii (Moskva)
Velimirović, Lj. 2001a. Change of geometric magnitudes under infinitesimal bending, Facta universitatis - series: Mechanics, Automatic Control and Robotics, 3(11), pp. 135-148.
Velimirović, Lj. 2001b. Infinitesimal bending of curves, Matematicki bilten Skopje, Makedonija, 25(LI), pp. 25-36.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.