• Adam Olaitan Abdulkareem Animal Physiology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria; Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
  • Abdulkareem Olarewaju Babamale Parasitology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria; Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming Chiao Tung University and Academia Sinica, Taipei Taiwan
  • Abass Toba Anifowoshe Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India; Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
  • Olufunke Adenike Opeyemi Parasitology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
  • Nusirat Oloriegbe Animal Physiology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
  • Comfort Adamolekun Parasitology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
  • Samson Adetula Animal Physiology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
  • Adeola Adefoluke Ala Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
Keywords: Malaria, Hypoglycaemia, Dyslipidaemia, Morinda lucida, Plasmodium berghei


Increasing drug resistance is a great threat to malaria control. Therefore, a continuous investigation into alternative therapy to mitigate malaria-associated damages is important. In this study, we investigated the anti-hypoglycaemic and anti-hyperlipidaemic effects of aqueous extract of Morinda lucida leaf in Plasmodium berghei­-infected mice. Twenty-five mice were randomly grouped into five: Uninfected, infected-untreated, chloroquine (20 mg/kg, per oral), and extract-treated (400 mg/kg and 800 mg/kg, respectively, per oral) groups. Fasting blood glucose was measured before parasite inoculation and after the last treatment. Blood was collected for lipid profile assay at the end of the 4-day treatment. Our results revealed that both chloroquine and the extract lowered parasite growth (p <0.05), while chloroquine and 400 mg/kg of the extract improved blood glucose in Plasmodium berghei-infection. More so, all the treated groups showed attenuated Plasmodium berghei-induced dyslipidaemia, with 400 mg/kg of the extract exhibiting better efficacy. Therefore, this study suggests that Morinda lucida leaf extract can be harnessed as a therapeutic regimen for improved malaria treatments and associated complications. Further study is recommended to elucidate the mechanism of anti-hypoglycaemic and anti-hyperlipidaemic activities of the extract and the possible bioactive compound(s) involved.


Adebayo, N. S., Abubakar, A. A., Emmanuel, A. S., Oluwabunmi, S. B., Ifeoluwa, J. D. & Blessing, O. 2020. Phyto Chemical Screening and Antiplasmodial Potential of Morinda lucida (Brimstone Leave) In Infected Mice. J. Middle East North Afr. sci.

Adeleye, O. O., Ayeni, O. J. & Ajamu, M. A. 2018. Traditional and medicinal uses of Morinda lucida. J. Med. Plants.

Adeneye, A. A. 2013. Profile of Morinda lucida leaf fractions on blood glucose and lipids in normal and Alloxan-induced hyperglycaemic rats. Pharmacologia.

Adetutu, A., Olorunnisola, O. S., Owoade, A. O., Owoade, A O. & Adegbola P. 2016. Inhibition of in vivo growth of Plasmodium berghei by Launaeataraxacifolia and Amaranthus viridis in mice. Malar Res Treat. https://doi.org/10.1155/2016/9248024

Afolabi, O. J. & Abejide, A. E. 2020. Antiplasmodial activities of Morinda lucida (Benth) and Alstoniaboonei (De wild) in mice infected with Plasmodium berghei. Bulletin of the National Research Centre. https://doi.org/10.1186/s42269-020-00342-8

Ahmad, W., Jantan, I. & Bukhari, S. N. 2016. Tinosporacrispa (L.) Hook. f. & Thomson: A Review of Its Ethnobotanical, Phytochemical, and Pharmacological Aspects. Front. Pharmacol. https://doi.org/10.3389/fphar.2016.00059

Babamale, O. A., Abdulkareem, A. O., Akande, A. O., Afolayan, M. A. & Ugbomoiko, U. S. 2017. Malaria-induced anaemia and serum micronutrients in asymptomatic Plasmodium falciparum infected patients. J Parasit Dis.

Babamale, O. A., Abdulkareem, A. O., Opeyemi, O. A. & Ugbomoiko, U. S. 2017. Alterations in T-helper cell type 1 and blood cell parameters in malaria-infected patients. Egypt. j. basic appl. sci. http://doi10.1007/s12639-017-0940-4

Chen, L., Ma, X. B., Liang, Y. H., Pei, S. C., Feng, Y. P. & Wei, M. 2011. Effects of persimmon leaf total flavonoid on enzyme of lipoprotein metabolism and antioxidation in hyperlipidemia rats. Chin. J. Nat. Med.

Elased, K. M., Taverne, J. & Playfair, J. H. L. 1996. Malaria, blood glucose, and the role of tumour necrosis factor (TNF) in mice. Clin Exp Immunol. 105, pp. 443-449.

Friedewald, W. T, Levy, R. I. & Fredrickson, D. S. 1972. Estimationof the concentration of lowdensity lipoprotein cholesterol in plasma, without use of the preparativeultracentrifuge. Clin Chem.

Geleta, G. & Ketema, T. 2016. Severe Malaria Associated with Plasmodium falciparum and P. vivax among Children in Pawe Hospital, Northwest Ethiopia. Malar Res Treat. http://dx.doi.org/10.1155/2016/1240962

Gulati, S., Ekland, E. H., Ruggles, K. V., Chan, R. B., Jayabalasingham, B., Zhou, B., Mantel P.  Y., Lee M.C., Spottiswoode, N., Coburn-Flynn O., Hjelmqvist D., Worgall T. S., Marti M., Di Paolo G. & Fidock D. A. 2015. Profiling the essential nature of lipid metabolism in asexual blood and gametocyte stages of Plasmodium falciparum. Cell Host Microbe.

Gupta, S., Bhaskar, G. & Andola C. H. 2011. Altitudinal variation in essential oil content in leaves of Zanthoxylum alatum a high value aromatic tree from Uttarakhand. Res. J. Med. Plants.

Idih, F. M., Ighorodje-Monago, C. C. & Ezim O. E. 2017. Antiplasmodial Effect of Ethanol Extract of Morinda lucida and Mucuna pruriens Leaves on NK65 Chloroquine Resistant Strain of Plasmodium berghei in Mice. Clin Exp Pharmacol. https://doi.org/10.4172/2161-1459.1000234

Idowu, O. A., Babalola, A. S., Adenubi, O. T. & Olukunle, J. O. 2014. Anti-plasmodial activities of combined extracts of Morinda morindiodes, Morinda lucida and Vernonia amygdalina in Plasmodium berghei infected-mice. Zoologist (The).

Idowu, O. A., Soniran, O. T., Ajana, O. & Aworinde, D. O. 2010. Ethnobotanical survey of antimalarial plants used in Ogun State, Southwest Nigeria. Afr. J. Pharm. Pharmacol.Jacob, E. A. 2014. Assessment of Altered Plasma Lipid Pattern in Plasmodium Falciparum Malaria Infected and Non Infected Individuals. Int J Blood Res Disord.

Jacob E. A. 2014. Assessment of Altered Plasma Lipid Pattern in Plasmodium Falciparum Malaria Infected and Non Infected Individuals. Int J Blood Res Disord. https/doi.org/10.12691/ijhd-1-1-5

Joshua, P. E., Okoro, I. J., Ekpo, D. E., Okagu, I. U. & Ogugua V. N. 2020. Methanol extract of Erythrina senegalensis leaves (MEES) ameliorates Plasmodium berghei-ANKA 65-parasitised aberrations in mice. All Life. https//doi.org/10.1080/26895293.2020.1718777

Kerry, N. & Abbey M. 1997. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis.

Kilian, N., Choi, J., Voelker, D. R. & Mamoun, C. B. 2018. Role of phospholipid synthesis in the development and differentiation of malaria parasites in the blood. J. Biol. Chem.

Krishna, A. P., Chandrika, Kumar S., Acharya, M. & Patil S. L. 2009. Variation in common lipid parameters in malaria infected patients. Indian J PhysiolPharmacol.

Kullu, B. K., Majhi, C., Pradhan, B. & Swain, D. K. 2018. Lipid profiles among Plasmodium falciparum infected, non malarial febrile patients and volunteers. Int J Adv Med.

Mehta, M., Sonawat, H. M. & Sharma, S. 2005. Malaria parasite-infected erythrocytes inhibit glucose utilization in uninfected red cells. FEBS Lett.

Mohapatra, S., Samantaray, J. C. & Ramakrishan, L. 2014. Lipid derangement as diagnostic and prognostic indicator for visceral leishmaniasis. Trop Parasitol.

Ngou-Milama, E., Duong, T. H., Minko, F., Dufillot, D., Kombila, M., Richard-Lenoble, D. & Mouray, H. 1995. Lipid profile during specific malaria therapy in Gabonese children  (in French). Sante.

Ojewunmi, O., Oshodi T., Ogundele, O., Micah, C. & Adenekan S. 2013. Evaluation of the Anti-Diabetic and Antioxidant Activities of Aqueous Extracts of Morinda lucida and Saccharum officinarum Leaves in Alloxan-Induced Diabetic Rats. Int J Biochem Res Rev.

Oladeji, O. S., Odelade, K. A. & Oloke J. K. 2019. Phytochemical screening and antimicrobial investigation of Moringa oleifera leaf extracts. J. Sci. Technol. Innov. Dev.

Oladeji, O. S., Oluyori, A. P., Bankole, D. T. & Afolabi, T. Y. 2020. Natural Products as Sources of Antimalarial Drugs: Ethnobotanical and Ethnopharmacological Studies. Scientifica. https://doi.org/10.1155/2020/7076139

Oluba, O. M., Olusola, A. O., Eidangbe, G. O., Babatola, L. J. & Onyeneke E. C. 2012 Modulation of lipoprotein cholesterol levels in Plasmodium berghei malarial infection by crude aqueous extract of Ganoderma lucidum. Cholesterol.

Ounjaijeana, S., Chachiyob, S. & Somsak V. 2019. Hypoglycemia induced by Plasmodium berghei infection is prevented by treatment with Tinosporacrispa stem extract. Parasitol. Int.

Pathak V. A. & Ghosh K. 2016. Erythropoiesis in Malaria Infections and Factors Modifying the Erythropoietic Response. Anemia. https://doi.org/10.1155/2016/9310905

Original Scientific Paper