NEW PROOF OF AHLFORS LEMMA ABOUT GREEN STOKES FORMULA FOR DISTRIBUTIONS

  • Ana Savić School of Electrical and Computer Engineering, Academy of Technical and Art Applied Studies, Belgrade, Serbia
Keywords: Convolutions, Distributions, Green Stokes formula, Test functions

Abstract


The paper presents a new proof of Ahlfors lemma about Green Stokes formula for distributions. The proof is performed directly using test functions instead of using convolutions.

 

References

Ahlfors, L. 2006. Lectures on Quasiconformal Mappings, University Lecture Series, vol.38, 2nd edn. American Mathematical Society, Providence

Arsenović, M., Mateljević, M. & Ahlfors, O. 2012. Teorija mere, funkcionalna analiza, teorija operatora (Zavod za udžbenike, Beograd)

Arsenović, M. & Mateljević, M. 2021. On Ahlfors-Beurling Operator, Journal of Mathematical Sciences, 259, pp. 1-9. https://doi.org/10.1007/s10958-021-05596-9>

Carleson, L. & Jones, P. 1992, On coefficient problems for univalent functions and conformal dimension. Duke Mathematical Journal. 66. DOI: 10.1215/S0012-7094-92-06605-1

Duren, P. 2004. Harmonic Mapping in the Plane, Cambridge University Press, Cambridge

Mateljević, M. 2012. Topic in Conformal, Quasiconformal and Harmonic Maps (Zavod za udžbenike, Beograd)

Mateljević, M. 2013a. Kompleksna analiza 1 (Zavod za udžbenike, Beograd)

Mateljević, M. 2013b. Kompleksna analiza 2 (Zavod za udžbenike, Beograd)

Published
2022/12/30
Section
Original Scientific Paper