

UDK 665.36:665.334.9]:664.68

Original research paper

<https://doi.org/10.5937/ffr0-61668>

SUNFLOWER WAX-BASED OLEOGEL FROM OILS REFINING WASTES AS A SHORTENING ALTERNATIVE IN CUPCAKE

Asmaa Gamal Abd El-hamied^{*1}, Hanaa A.R. Mohamed², Ahmed Abdelgawad³

¹Agricultural Research Center, Food Technology Research Institute, Food Engineering and Packaging Department, Giza, Egypt

²Agricultural Research Center, Food Technology Research Institute, Experimental Kitchen Research Unit, Giza, Egypt

³Agricultural Research Center, Food Technology Research Institute, Oils and Fats Technology Research Department, Giza, Egypt

Abstract: This investigation utilized sunflower wax, a by-product recovered from sunflower oil refining waste, to prepare a sunflower oil-based oleogel (SFW-BO) and evaluated its potential as a full replacement for conventional palm oil-based shortening (SH-BPO) in bakery applications. The novelty of this study lies in the use of sunflower wax obtained directly from oil refining waste, rather than commercial wax, emphasizing resource sustainability. Fourier-transform infrared (FTIR) spectroscopy confirmed the effectiveness of the purification process in producing high-purity wax. Physicochemical characterization demonstrated that 100% SFW-BO exhibited superior oil-binding capacity (OBC \approx 99%) and a higher melting point (53.2°C) compared to SH-BPO (40.1°C). Fatty acid profiling revealed that increasing the proportion of SFW-BO significantly reduced saturated fatty acid content from 50.61% (100% SH-BPO) to 11.15% (100% SFW-BO), while increasing unsaturated fats. Cupcakes formulated with SFW-BO blends showed enhanced specific volume and reduced textural hardness, with the 100% replacement sample achieving the highest volume (1.86 cm³/g). Water activity and sensory analyses indicated no significant differences between shortening and oleogel-containing cupcakes, suggesting comparable microbial stability and consumer acceptability. These findings establish refining waste-derived sunflower wax oleogel as a functionally robust and nutritionally advantageous alternative to traditional shortening, enabling the production of baked goods with a reduced saturated fat footprint without compromising technological performance or sensory quality.

Key words: sunflower wax, oleogel, shortening, cupcakes, saturated fatty acids, oil refining waste

INTRODUCTION

The sunflower oil refining process yields substantial quantities of underutilized by-products, notably waxes and phospholipids, which remain underutilized at a commercial scale (Re-

dondas, Baümler & Carelli, 2020; Lutsenko, Kharytonov & Peron, 2024). The sunflower seed contains approximately 3% wax, with nearly 80% concentrated in the hull fraction

(Carelli, Frizzera, Forbito & Crapiste, 2002). Sunflower wax (SFW) is considered as a replacement to many types of wax, such as carnauba, rice bran and candelilla wax. The technological applications of SFW encompass diverse food sectors, including edible coatings, emulsification systems, and oleogelation, particularly as substitutes for conventional saturated fats including palm oil, hydrogenated oils, butter, margarine, and shortening. These traditional lipid sources contain elevated levels of saturated fatty acids, whose consumption has been epidemiologically linked to adverse cardiovascular health outcomes (Öğütçü & Yılmaz, 2015; Ruiz-Núñez, Dijck-Brouwer & Muskiet, 2016; Doan, Tavernier, Okuro, & Dewettinck, 2018). Consequently, reducing dietary exposure to these fats represents a significant public health objective.

Oleogelation technology provides an innovative approach to structuring liquid oils into semi-solid systems without chemical modification. These thermoreversible gels form when gelator molecules create three-dimensional networks that immobilize oil phases through physical interactions, yielding materials with tailored rheological properties. This technique offers distinct advantages over conventional fat modification processes such as hydrogenation, including enhanced safety profiles and processing efficiency (Hughes, Marangoni, Wright, Rogers & Rush, 2009).

Multiple compound classes demonstrate organogelation capabilities, including lecithin, sorbitan tristearate, phytosterols, oryzanol, long-chain fatty acids, fatty alcohols, monoacylglycerides, wax esters, natural waxes, ricinoleic acid, 12-hydroxystearic acid and cellulose derivatives like ethyl and methyl cellulose (Rogers, Wright & Marangoni, (2009); Schubert et al., 2022 and Gao et al., 2024). Among these, food-grade waxes have emerged as particularly promising oleogelators due to their regulatory acceptance, cost-effectiveness, and pronounced gelling efficiency.

The efficiency of different types of waxes: plant-based, animal-derived, and petroleum-based, in converting soybean oil into gel was evaluated in a study by Hwang et al. (2012).

The tested waxes included sunflower wax, carnauba wax, beeswax, microcrystalline wax, candelilla wax, rice bran wax, Kester wax,

synthetic spermaceti, paraffin wax, castor wax (hydrogenated castor oil), jojoba oil, bayberry wax, Japan wax, and shellac wax. Sunflower wax showed the highest gelation effectiveness compared to other types of wax and was able to form a gel at concentrations ranging from 0.5 to 10%.

This exceptional gelling performance originates from SFW's distinctive chemical architecture. Unlike many vegetable waxes containing heterogeneous mixtures of hydrocarbon species, alcohols, and ketones, SFW comprises predominantly long-chain esters (C40-C60), and unsaturated fatty alcohols (C18-C34), that facilitate the development of highly organized crystalline networks with superior oil-binding capacity even at low concentrations (Patel, Babaahmadi, Lesaffer & Dewettinck, 2015 and Chalapud, Baümler & Carelli, 2017). These characteristics position SFW-based oleogels as compelling alternatives to conventional solid fats in bakery applications (Öğütçü & Yılmaz, 2015).

Solid fats have a pivotal role in evaluating the functional properties of various food products, especially bakery products such as bread, cakes, cookies, biscuits, and pastries. Solid fats are often called "shortenings" due to giving a "short" or soft texture to bakery products (Ghotra, Dyal & Narine, 2002). In baking purposes, shortening performs multiple critical functions: they mediate air cell incorporation and stabilization during mixing, interrupts gluten network development, and contributes to flavor release and mouthfeel perception, facilitates heat transfer during baking, and potentially extends product shelf life (Ghotra et al., 2002; Renzyaeva, 2013 and Rios, Pessanha, Almeida, Viana & Lannes, 2014).

The present study aimed to develop and characterize an oleogel system structured by SFW purified from industrial refining waste. We systematically evaluated the physicochemical and functional properties of this novel oleogel and its blends with conventional shortening, assessing its viability as a complete replacement in cake formulations. Our investigation provides critical insights into the nutritional, technological, and sensory implications of utilizing waste-derived SFW as a sustainable alternative to traditional high-saturated fat ingredients in bakery products.

MATERIALS AND METHODS

Materials

Refined, bleached and deodorized (RBD) sunflower oil and shortening (free of added anti-oxidants) and crude sunflower wax from the dewaxing step were supplied by Arma Company, 10th of Ramadan, Sharkia Government, Egypt.

Sunflower wax purification

Crude sunflower wax (SFW) was purified according to the method described by Redond et al. (2020) with a modification. Briefly, 300 g of the crude wax was refluxed with hexane at a 1:2 (w/v) ratio at 70°C for 30 min under continuous stirring. The purification temperature was set to 70°C slightly above the melting point of sunflower wax 67°C to ensure complete melting and enhance impurity separation. The supernatant was collected and stored at -18°C for 18 h to induce wax crystallization.

The wax crystals were subsequently separated by centrifugation. This procedure was repeated several times, and the resultant wax crystals were washed three times with ethanol at room temperature to eliminate any remaining polar impurities. The yield of purified wax varied with the initial impurity and residual oil content in the crude wax. In this study, the recovery was 79.65%. The purified wax exhibited a lighter color and a smoother texture compared to its crude form (Fig. 1).

Fourier Transform Infrared Spectroscopy (FTIR)

The chemical profiles of both crude and purified wax were analyzed using an FTIR spectrophotometer (INVENIO S, Bruker) equipped with a diamond ATR accessory. Spectra were recorded in the range of 4000 to 500 cm^{-1} .

Preparation of oleogel and blends

Sunflower wax-based oleogel (SFW-BO) was

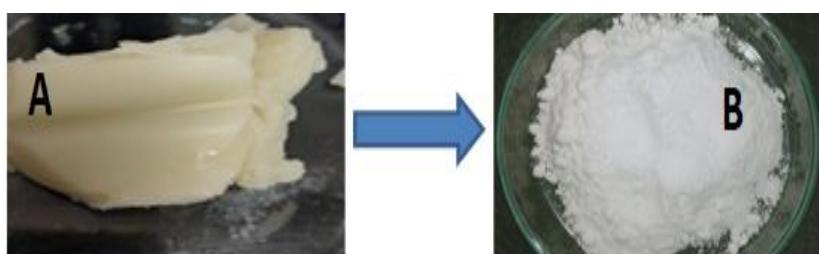


Figure 1. Crude SFW (A) and purified SFW (B).

Figure 2. Shortening-based palm oil (SH-BPO), sunflower wax-based oleogel (SFW-BO), their blends, and sunflower oil (SFO).

Table 1.

The mixing ratios of shortening-based palm oil and sunflower wax-based oleogel

Samples	Mixing ratio
100% Shortening– based palm oil (SH-BPO)	100% shortening
20% sunflower wax-based oleogel (20 % SFW-BO)	20% oleogel +80% shortening
40% sunflower wax-based oleogel (40% SFW-BO)	40% oleogel +60% shortening
60% sunflower wax-based oleogel(60% SFW-BO)	60% oleogel +40% shortening
80% sunflower wax-based oleogel(80% SFW-BO)	80% oleogel +20% shortening
100% sunflower wax-based oleogel(100% SFW-BO)	100% oleogel

prepared by adding SFW to heated sunflower oil (90°C) at a concentration of 10% (w/w), followed by stirring until complete dissolution, and subsequent cooling to room temperature (Lim, Hwang & Lee, 2017).

The formed oleogel was stored in a refrigerator. Blends with shortening (SH-BPO) were prepared following the method of Demirkesen & Mert (2019) at the ratios detailed in Table 1. The mixtures were heated to 50°C, stirred for 30 min, pre-cooled, crystallized at 20°C, kneaded, and then tempered at 25°C for 3 days before final storage at 5°C. Visual representations of the fat samples are provided in Fig. 2.

Physicochemical analysis of fats

Free fatty acids (FFAs), expressed as a percentage of oleic acid, peroxide value (PV) in meqO₂/kg oil, and the melting point of the samples were determined using standard AOAC methods (AOAC, 2019).

Fatty acid methyl esters (FAMEs) were prepared via cold saponification (ISO 12966-2:2017) and analyzed using an Agilent 6890 series gas chromatograph fitted with a DB-23 capillary column (60 m × 0.32 mm × 0.25 μm; Agilent Technologies Inc., CA, USA).

The oil-binding capacity (OBC) was assessed by solidifying approximately 3 g of the melted sample in a centrifuge tube. Centrifugation was performed at 4000 rpm (1,629×g) for 15 minutes to expel unbound oil. The tubes were then inverted and placed on tissue paper for 5 minutes to allow drainage (Onacik-Gür & Zbikowska, 2019). The sample mass was recorded before and after this process.

The percentage released oil and the OBC were calculated using the following formulas.

$$\text{Released Oil (\%)} = [(W_0 - W_a)/W_0] \times 100$$

Where W_0 = initial weight, W_a = weight after drainage

$$\text{OBC (\%)} = 100 - \text{Released Oil (\%)}$$

Cupcake preparation

Cupcakes were formulated according to AACC (2000) guidelines with slight modifications. The recipe consisted of wheat flour (100g), fresh eggs (80g), sugar (60g), skim milk pow-

der (3g), baking powder (4g), vanilla powder (1g), salt (0.5g), and fat (50g of the respective sample). Cupcakes were baked in a pre-heated oven at 180 °C for 20 min. After baking, they were cooled for 2 hr. at room temperature (30±2 °C), then packaged in polyethylene bags for subsequent analysis. Fig. 3 displays the prepared cupcake samples.

Cupcake analysis

The water activity (a_w) was determined using a digital water activity meter (Aqualab 4 TE series, Decagon, USA) (Santos, Magalhães, Okuro, Steel & Cunha, 2024).

The baking loss was measured according to Liu et al. (2020) using the following equation (1):

$$\text{Baking loss (\%)} = (W_0 - W_1)/W_0 \times 100$$

where, W_0 : weight of cupcake batter before baking and W_1 : weight of baked cupcake after cooling for 2h.

Specific volume was measured after baking and a 2 h cooling period using the rapeseed displacement method (AACC Method 10-05.1, 2002). The specific volume was calculated as the ratio of the cupcake's volume to its weight (cm³/g).

The color parameters of both fat and cupcake samples (crust and crumb) were determined using a Chroma meter (Minolta CR-400, Minolta, Osaka, Japan) in the CIE L*a*b* system according to Yilmaz & Öğütçü (2015). The values for L* (lightness; 100=light, 0=dark), a* (+red/-green), and b* (+yellow/-blue) were recorded. Texture profile analysis of the cupcake samples, including hardness (N), springiness (mm), cohesiveness, gumminess (N), and chewiness (mJ), was performed using a CT3 Texture Analyzer (Brookfield, Engineering Laboratories, Inc., USA) following the method of Alvarez-Ramirez (2016). A 36 mm diameter cylindrical probe was used at a test speed of 2 mm/s, targeting the center of the cupcake. The sample was compressed to 40% deformation with a trigger load of 5 g. All parameters and data were automatically recorded by the associated software (TA-CT-PRO).

The sensory attributes of the cupcakes (color, taste, odor, appearance, texture, and overall acceptability) were evaluated by a panel of 10 trained researchers from the Food Technology

Research Institute (FTRI) according to the methodology described by Hussien, Afify and Shabib (2023). Samples were coded with random three-digit numbers and presented in a randomized order under controlled lighting and ambient temperature conditions. A 9-point hedonic scale (1 = dislike extremely, 9 = like extremely) was used to rate each attribute.

The study protocol was reviewed and approved by the Ethics Committee of the Food Technology Research Institute, Agricultural Research Center (approval no. SEC-20). All participants were fully informed about the

study and provided voluntary consent prior to the evaluation.

Statistical analysis

All data were statistically analyzed using CoState software (CoHort Software, Monterey, CA, USA). A one-way analysis of variance (ANOVA) under a completely randomized design was applied. Means were compared using Duncan's test at a significance level of $p < 0.05$.

Results were presented as mean values \pm standard deviation (SD), as outlined by Snedecor and Cochran (1982).

Figure 3. Prepared cupcakes from shortening-based palm oil, sunflower wax-based oleogel, and their blends.

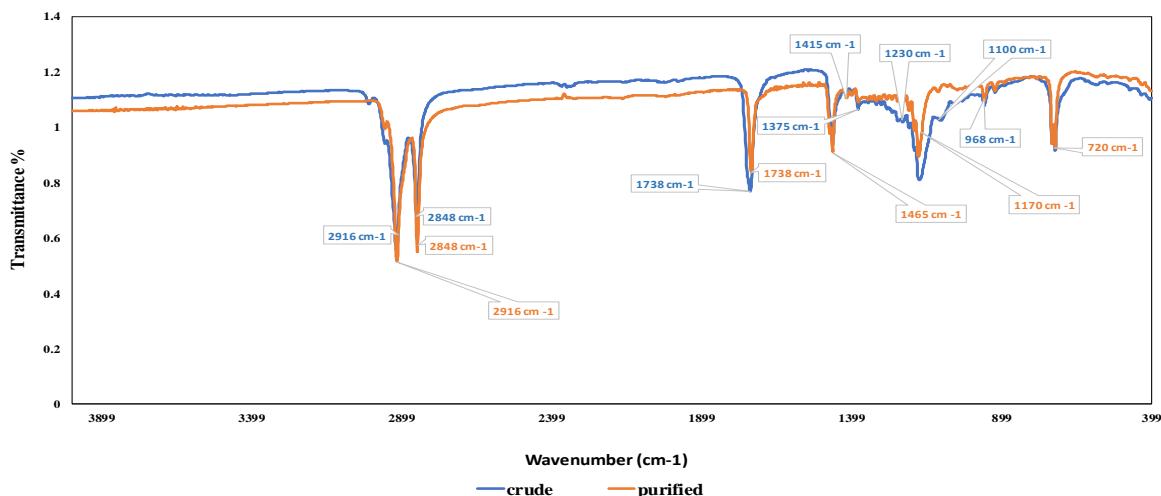


Figure 4. FTIR spectra of sunflower wax before and after purification

RESULTS AND DISCUSSION

Fourier Transform Infrared Spectroscopy (FTIR) of crude and purified sunflower wax

FTIR spectroscopy was applied for crude and purified wax to evidence the efficiency of the purification process in removing residual oil and impurities.

The FTIR spectra were recorded in the range of 4000–500 cm⁻¹ (Fig. 4). In both samples, the key absorption peaks characteristic of aliphatic hydrocarbon wax components remained intact. These include the strong, sharp asymmetric and symmetric CH₂ stretches at ~2916 and ~2848 cm⁻¹, and a sharp wax ester carbonyl (C=O) stretch at ~1738 cm⁻¹. This indicates preservation of the core hydrocarbon wax structure (Knuutinen & Norrman, 2000; Du-bey, Sharma & Kumar, 2017; Dimakopoulou-Papazoglou, Zampouni, Katsanidis, Prodromidis & Moschakis, 2024). The purified wax spectrum is defined by key vibrations of the core wax ester structure, including CH₂ bending at 1465 cm⁻¹, C–O stretching at 1170 cm⁻¹, and a long-chain methylene (CH₂) rock at 720 cm⁻¹. In contrast, the unpurified crude wax exhibits a highly complex spectrum with numerous additional absorptions. These include an O–H in-plane bend at 1415 cm⁻¹, a CH₃ bend at 1375 cm⁻¹, a complex profile of C–O stretches between 1230 and 1100 cm⁻¹, and a =C–H bend at 968 cm⁻¹. These additional peaks are potentially attributable to triglycerides, free fatty acids, and ester compounds commonly associated with sunflower oil residues (Yi, Yao, Xu, Wang & Wang, 2019; Stanciu, 2025). The FTIR results provide strong evidence that the purification process effectively removed unwanted materials and produced pure wax.

Physicochemical properties of fats

In Table (2), all samples exhibited low FFA (<0.1%) and PV (<1.2 meq O₂/kg) values, well below Codex Alimentarius limits (2009), which specify a maximum of 0.3% for FFAs and 10 meq O₂/kg for PV, indicating that oleogelation and blending did not induce significant hydrolysis or oxidation (Özer & Özer, 2023).

Oil-binding capacity (OBC) is a crucial attribute of oleogels, defining their ability to immobilize liquid oil within a semi-solid matrix. A high OBC is essential for preserving the

structural integrity, texture, and functional performance of oleogels in food products (Yang, Yang, Chen, Chen & Liu, 2020).

The exceptional functionality of purified SFW as an oleogelator stems from its unique chemical composition. SFW is predominantly composed of very long-chain esters (C40–C60), which, upon cooling, self-assemble into a dense, three-dimensional crystalline network that traps liquid oil via strong van der Waals and dipole-dipole interactions (Co & Marangoni, 2012; Doan et al., 2018). This microstructural superiority directly governs the macroscopic properties of the oleogel. The dense, interconnected crystal network resulted in an exceptionally high OBC for SFW-BO (98.97%), significantly surpassing that of traditional shortening (80.89%).

This performance is notably superior to that of other common wax oleogels. For instance, while carnauba wax is an effective gelator, it often requires higher concentrations than SFW to achieve a similar OBC and can produce firmer, more brittle gels (Dassanayake, Kodali, Ueno & Sato, 2011; Öğütçü & Yılmaz, 2015). Similarly, beeswax oleogels, though effective, have been reported to exhibit lower OBC and a softer texture compared to SFW-based gels, which can compromise the structural integrity of baked goods (Blake & Marangoni, 2015).

The melting point (MP) of SFW-BO (53.2°C) was significantly higher ($p < 0.05$) than that of SH-BPO (40.1°C). Furthermore, a clear upward trend in MP was observed with increasing SFW-BO concentration, further underscoring the robustness of its crystalline network. This higher melting point of SFW-BO, compared to SH-BPO, highlights its thermal stability a trait where SFW often outperforms beeswax (MP ~62–64°C, but with a different crystalline structure) and is comparable to or higher than carnauba wax-based oleogels (Hwang, Kim, Singh, Winkler-Moser & Liu, 2012). These findings are consistent with previous studies reporting that the melting points of sunflower wax-based oleogels range between 47°C and 65°C, depending on wax concentration, and that increasing oleogel content in fat blends elevates melting points and enthalpy values, indicating a more structured crystal network (Co & Marangoni, 2012; Hwang et al., 2012). These results demonstrate that the melting properties of fat formulations

can be tailored by adjusting the SFW-BO ratio to meet specific application needs, such as in bakery products requiring structural integrity at elevated temperatures (Qiu, 2024).

The color properties (L^* , a^* , b^*) of the fat samples are summarized in Table 2. The lightness (L^*) of 100% SH-BPO (63.11) was higher than that of 100% SFW-BO (50.09), which can be attributed to lower light reflectance caused by the opaque nature and high crystallinity of the wax (Marangoni & Garti, 2018). For the a^* values, a significant shift from more negative values (green) to less negative values (more neutral/reddish) was observed, increasing from -3.42 in SH-BPO to -1.73 in 100% SFW-BO. This change may be due to the lower pigment content in sunflower wax and oil compared to palm oil (Co & Marangoni, 2012). The b^* values (yellowness) were highest in the 100% SH-BPO sample (8.56) and decreased with a higher SFW-BO ratio. The color of the oleogel could be modified by adding oil-soluble colorants during preparation to enhance visual appeal for specific food applications and consumer acceptance.

Fatty acid composition of fats

A key objective was to utilize SFW-BO in bakery applications to improve the fatty acid profile by increasing the ratio of unsaturated (UFA) to saturated fatty acids (SFA). The primary nutritional benefit of using SFW-BO lies in its ability to structure inherently healthy, high-unsaturated oils.

Table 3 and Fig. 5 present the fatty acid composition of the samples. Significant differences ($p \leq 0.05$) were observed in most individual fatty acids and in the total SFA and UFA contents. The SFA content decreased substantially from 50.61% in 100% SH-BPO to 11.15% in 100% SFW-BO.

Concurrently, the UFA content increased from 49.39% to 88.85%. Thus, a higher oleogel-to-shortening ratio resulted in a more favorable fatty acid profile, rich in unsaturated fats. This shift aligns with dietary guidelines recommending that SFA intake be limited to below 10% proposed by (WHO, 2003) or even 7% by (American Heart Association Nutrition Committee, 2006) of total energy to reduce coronary heart disease risk (Mozaffarian, Micha & Wallace, 2010; De Souza et al., 2015).

Furthermore, replacing SH-BPO with SFW-BO reduced the content of palmitic acid from 46.44% to 39.12, 31.43, 23.5, and 15.2% at substitution levels of 20, 40, 60, and 80%, respectively. Palmitic acid is known to be harmful to health, according to (WHO, 2003) that reported conclusive evidence that it increases the risk of cardiovascular disease, and its continued consumption leads to greater body fat accumulation than other saturated fatty acids (Mondul et al., 2015; Senyilmaz-Tiebe et al., 2018; Vanrooijen, Plat, Zock, Blom & Mensink, 2021).

Cupcake physical properties

The transition from the fat's properties to the final cupcake quality is where the structural advantage of SFW-BO became most apparent. The baking loss, specific volume, and water activity of cupcakes are shown in Table 4. Replacing shortening with oleogel led to a decreased in baking loss from 8.21% to 6.86%, though the differences were not significant ($p \leq 0.05$). This finding aligns with Ozdemir-Orhan, Eroglu & Omac (2024), who reported that substituting shortening with oleogel did not significantly affect the baking loss of cakes.

The specific volume of cupcakes increased significantly with higher SFW-BO levels, with the 100% replacement sample achieving the highest volume ($1.86 \text{ cm}^3/\text{g}$), compared to the control ($1.27 \text{ cm}^3/\text{g}$). This suggests that the rigid SFW-BO network is more effective at incorporating and stabilizing air cells during mixing and baking, thereby enhancing gas retention, as supported by Alvarez-Ramirez, Vernon-Carter, Carrera-Tarela, Garcia & Roldan-Cruz (2020) and Feng et al. (2025) resulting in final the specific volume increase. Water activity (a_w) influences microbial stability, textural properties, overall quality and shelf life of bakery products (Rahman, 2009). Replacing SH-BPO with SFW-BO up to 100% did not significantly affect the a_w value of the cupcakes, which ranged between 0.72 and 0.73. These values indicate that the cakes are microbiologically stable, as most pathogenic bacteria do not grow below a_w 0.85 (Rahman, 2009). This result is consistent with Ozdemir-Orhan et al. (2024), who found no significant difference in

a_w between control cakes and those containing oleogel. The color parameters of the cupcake crust and crumb are presented in Table 5. Replacing shortening with oleogel induced a significant ($p \leq 0.05$) decrease in L^* (lightness) for both crust and crumb. The a^* and b^* values generally increased with higher oleogel levels, indicating greater redness and yellowness, except for the b^* value of the 100% SFW-BO crumb, which was lower than the control. These findings align with Roufegarinejad, Ahmadi, Icyer, Toker & Khiabani, (2024) and Santos et al. (2024), who observed that oleogel replacement increased darkness, redness, and yellowness in cakes. The color changes may be

due to the increased unsaturation of the oil, potentially enhancing the Maillard reaction during baking (Roufegarinejad et al., 2024).

The inherent darker color of the oleogel itself (Table 2) also contributes to this effect. The textural profile analysis of the cupcakes (hardness, cohesiveness, springiness, gumminess and chewiness) is shown in Table 6.

Hardness values gradually decreased with increasing oleogel content, with the 100% SFW-BO sample exhibiting the lowest value (10.91 N), significantly different from the control (14.24 N).

Table 2.

Physicochemical properties of shortening-based palm oil, sunflower wax-based oleogel, and their blends

Parameters	Samples					
	100% SH-BPO	20% SFW-BO	40% SFW-BO	60% SFW-BO	80% SFW-BO	100% SFW-BO
FFA %	0.06 \pm 0.01 ^c	0.09 \pm 0.00 ^b	0.08 \pm 0.02 ^b	0.10 \pm 0.01 ^{ab}	0.09 \pm 0.01 ^b	0.10 \pm 0.00 ^a
PV meq O ₂ /kg oil	0.85 \pm 0.04 ^c	1.01 \pm 0.02 ^b	1.05 \pm 0.05 ^b	1.08 \pm 0.10 ^b	1.00 \pm 0.05 ^{ab}	1.19 \pm 0.10 ^a
MP °C	40.10 \pm 0.35 ^f	44.00 \pm 1.30 ^e	46.50 \pm 0.40 ^d	48.30 \pm 0.50 ^c	50.00 \pm 0.61 ^b	53.20 \pm 0.49 ^a
OBC (%)	80.89 \pm 0.10 ^f	90.77 \pm 0.10 ^e	95.77 \pm 0.12 ^d	96.62 \pm 0.18 ^c	98.08 \pm 0.17 ^b	98.97 \pm 0.24 ^a
L^*	63.11 \pm 0.62 ^a	61.94 \pm 0.75 ^b	59.43 \pm 0.68 ^c	58.58 \pm 0.49 ^c	53.24 \pm 0.52 ^d	50.09 \pm 0.34 ^e
color	a^* -3.42 \pm 0.30 ^d	a^* -3.23 \pm 0.23 ^{cd}	a^* -2.86 \pm 0.25 ^c	a^* -2.36 \pm 0.15 ^b	a^* -2.32 \pm 0.20 ^b	a^* -1.73 \pm 0.30 ^a
	b^* 8.56 \pm 0.25 ^a	b^* 6.86 \pm 0.34 ^b	b^* 6.23 \pm 0.33 ^{bc}	b^* 6.15 \pm 0.21 ^{cd}	b^* 6.75 \pm 0.46 ^d	b^* 6.17 \pm 0.27 ^d

Shortening-based palm oil (SH-BPO) and sunflower wax-based oleogel (SFW-BO).

Values are means \pm SD of three replicates; different superscripts letters in the same row indicate significant differences ($p \leq 0.05$).

Table 3.

Fatty acid content (%) of shortening-based palm oil, sunflower wax-based oleogel, and their blends

Fatty acid	Samples					
	100% SH-BPO	20% SFW-BO	40% SFW-BO	60% SFW-BO	80% SFW-BO	100% SFW-BO
Lauric acid (C12:0)	0.13 \pm 0.03 ^a	0.11 \pm 0.02 ^d	0.08 \pm 0.01 ^{cd}	0.05 \pm 0.02 ^{bc}	0.03 \pm 0.01 ^{ab}	ND
Myristic acid (C14:0)	0.87 \pm 0.07 ^a	0.72 \pm 0.06 ^{ab}	0.57 \pm 0.08 ^b	0.41 \pm 0.02 ^c	0.24 \pm 0.02 ^d	0.07 \pm 0.02 ^e
Palmitic acid (C16:0)	46.44 \pm 2.31 ^a	39.12 \pm 0.88 ^{ab}	31.43 \pm 1.43 ^{bc}	23.5 \pm 1.06 ^{cd}	15.2 \pm 0.79 ^d	6.50 \pm 0.27 ^e
Palmitoleic acid (C16:1)	ND	0.02 \pm 0.00 ^e	0.04 \pm 0.00 ^d	0.06 \pm 0.01 ^c	0.09 \pm 0.01 ^b	0.12 \pm 0.00 ^a
Margaric acid (C17:0)	ND	0.01 \pm 0.00 ^d	0.02 \pm 0.00 ^d	0.03 \pm 0.01 ^{cd}	0.05 \pm 0.01 ^{ab}	0.06 \pm 0.01 ^a
Margoleic acid (C17:1)	ND	0.01 \pm 0.00 ^e	0.02 \pm 0.00 ^d	0.03 \pm 0.00 ^c	0.05 \pm 0.00 ^b	0.06 \pm 0.00 ^a
Stearic acid (C18:0)	3.17 \pm 0.13 ^{cd}	3.23 \pm 0.18 ^{bc}	3.28 \pm 0.21 ^b	3.35 \pm 0.16 ^{ab}	3.39 \pm 0.38 ^a	3.49 \pm 0.39 ^a
Oleic acid (C18:1)	41.52 \pm 1.53 ^a	38.69 \pm 0.75 ^{ab}	35.86 \pm 1.03 ^{abc}	32.69 \pm 0.50 ^{abc}	29.50 \pm 0.90 ^{bc}	26.14 \pm 1.15 ^c
Linoleic acid (C18:2)	7.69 \pm 0.70 ^e	17.7 \pm 0.21 ^d	28.11 \pm 1.93 ^d	39.06 \pm 0.96 ^c	50.39 \pm 2.29 ^b	62.26 \pm 1.73 ^a
Linolenic acid (C18:3)	ND	0.02 \pm 0.00 ^e	0.03 \pm 0.00 ^d	0.05 \pm 0.00 ^c	0.07 \pm 0.00 ^b	0.09 \pm 0.01 ^a
Arachidic acid (C20:0)	ND	0.05 \pm 0.01 ^e	0.10 \pm 0.02 ^d	0.16 \pm 0.02 ^c	0.22 \pm 0.03 ^b	0.28 \pm 0.04 ^a
Eicosenoic acid (C20:1)	0.18 \pm 0.2 ^a	0.18 \pm 0.02 ^a	0.18 \pm 0.24 ^a	0.18 \pm 0.26 ^a	0.18 \pm 0.28 ^a	0.18 \pm 0.03 ^a
Behenic acid (C22:0)	ND	0.14 \pm 0.01 ^e	0.28 \pm 0.01 ^d	0.43 \pm 0.02 ^c	0.59 \pm 0.05 ^b	0.75 \pm 0.06 ^a
Total saturated fatty acids	50.61 \pm 2.54 ^a	43.38 \pm 1.53 ^{ab}	35.76 \pm 0.090 ^{bc}	27.93 \pm 1.04 ^{cd}	19.72 \pm 0.47 ^{de}	11.15 \pm 0.79 ^e
Total unsaturated fatty acids	49.39 \pm 0.81 ^e	56.62 \pm 0.57 ^e	64.24 \pm 1.56 ^d	72.07 \pm 0.39 ^c	80.28 \pm 2.75 ^b	88.85 \pm 2.8 ^a

Not detected (ND). Shortening-based palm oil (SH-BPO) and sunflower wax-based oleogel (SFW-BO).

Values are means \pm SD of three replicates; different superscripts letters in the same row indicate significant differences ($p \leq 0.05$).

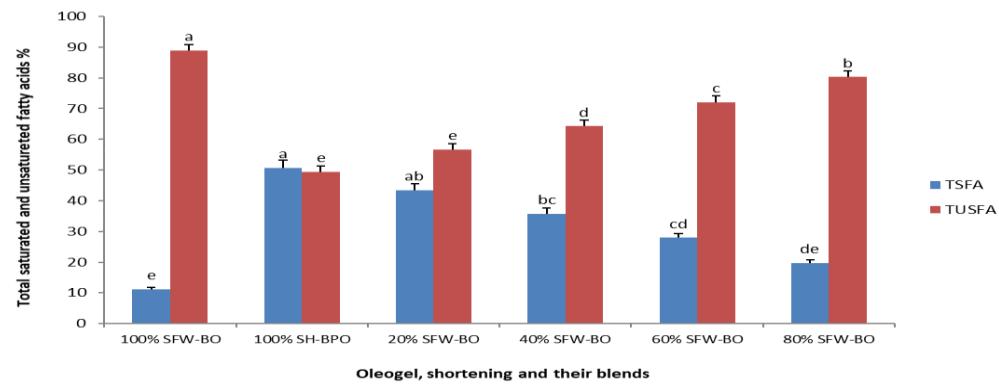


Figure 5. Total saturated fatty acids (TSFA) & total unsaturated fatty acids (TUSFA) for oleogel, shortening, and their blends. Different letters within the same trait indicate significant differences ($p \leq 0.05$).

Table 4.

Baking loss, specific volume and water activity of cupcake samples were prepared from sunflower wax-based oleogel, shortening-based palm oil, and their blends

Samples	Baking loss (%)	Specific volume (cm ³ /g)	Water activity (a_w)
100% SH-BPO	8.21 ^a \pm 1.02	1.27 \pm 0.19 ^c	0.73 \pm 0.005 ^a
20 % SFW-BO	7.96 ^a \pm 0.89	1.54 \pm 0.21 ^{bc}	0.73 \pm 0.005 ^a
40% SFW-BO	7.55 ^a \pm 0.92	1.76 \pm 0.12 ^{ab}	0.73 \pm 0.000 ^a
60% SFW-BO	7.50 ^a \pm 1.00	1.799 \pm 0.09 ^{ab}	0.72 \pm 0.010 ^{ab}
80% SFW-BO	7.30 ^a \pm 0.90	1.81 \pm 0.16 ^{ab}	0.72 \pm 0.010 ^{ab}
100% SFW-BO	6.86 ^a \pm 0.97	1.86 \pm 0.22 ^a	0.72 \pm 0.010 ^{ab}

Shortening-based palm oil (SH-BPO) and sunflower wax-based oleogel (SFW-BO).

Values are means \pm SD of three replicates, different superscripts letters in the same column indicate significant differences ($p \leq 0.05$).

Table 5.

Color of cupcake samples were prepared from sunflower wax-based oleogel, shortening-based palm oil, and their blends

Samples	Color					
	L*	a*	b*	L*	a*	b*
100% SH-BPO	62.36 \pm 0.35 ^a	8.41 \pm 0.25 ^e	39.18 \pm 0.24 ^d	75.04 \pm 0.53 ^a	-1.80 \pm 0.11 ^c	28.66 \pm 0.49 ^b
20 % SFW-BO	61.85 \pm 0.42 ^b	10.25 \pm 0.38 ^d	42.21 \pm 0.27 ^a	74.38 \pm 0.56 ^a	-1.57 \pm 0.14 ^c	30.16 \pm 0.60 ^a
40% SFW-BO	59.35 \pm 0.39 ^b	12.44 \pm 0.41 ^b	42.64 \pm 0.64 ^a	74.41 \pm 0.49 ^a	-1.14 \pm 0.09 ^b	30.55 \pm 0.67 ^a
60% SFW-BO	57.22 \pm 0.22 ^d	13.38 \pm 0.43 ^a	41.21 \pm 0.17 ^b	70.52 \pm 0.52 ^b	-0.85 \pm 0.21 ^{ab}	30.85 \pm 0.67 ^a
80% SFW-BO	55.11 \pm 0.23 ^e	13.25 \pm 0.35 ^a	40.44 \pm 0.51 ^c	68.60 \pm 0.47 ^c	-0.64 \pm 0.19 ^a	30.71 \pm 0.53 ^a
100% SFW-BO	58.71 \pm 0.41 ^c	11.35 \pm 0.29 ^c	40.96 \pm 0.38 ^{bc}	67.06 \pm 0.55 ^d	-0.62 \pm 0.23 ^a	27.26 \pm 0.72 ^c

Shortening-based palm oil (SH-BPO) and sunflower wax-based oleogel (SFW-BO).

Values are means \pm SD of three replicates, different superscripts letters in the same column indicate significant differences ($p \leq 0.05$).

Table 6.

Texture profile analysis of cupcake samples were prepared from sunflower wax-based oleogel, shortening-based palm oil, and their blends

Samples	Hardness (N)	Cohesiveness	Springiness (mm)	Gumminess (N)	Chewiness (mJ)
100% SH-BPO	14.24 ^a \pm 1.01	0.38 \pm 0.15	11.21 ^b \pm 0.20	5.86 ^a \pm 0.55	64.96 ^a \pm 0.81
20 % SFW-BO	13.89 ^a \pm 0.98	0.40 \pm 0.12	11.30 ^b \pm 0.30	5.40 ^{ab} \pm 0.25	61.36 ^b \pm 1.03
40% SFW-BO	13.09 ^{ab} \pm 1.23	0.41 \pm 0.19	11.14 ^b \pm 0.35	5.00 ^{bc} \pm 0.40	55.71 ^c \pm 1.65
60% SFW-BO	12.52 ^{abc} \pm 1.33	0.41 \pm 0.16	11.13 ^b \pm 0.14	4.55 ^{cd} \pm 0.39	51.02 ^d \pm 1.02
80% SFW-BO	11.57 ^{bc} \pm 1.02	0.37 \pm 0.12	11.80 ^a \pm 0.17	4.32 ^{cd} \pm 0.40	50.97 ^d \pm 1.15
100% SFW-BO	10.91 ^c \pm 0.95	0.43 \pm 0.15	12.15 ^a \pm 0.14	4.15 ^d \pm 0.37	50.22 ^d \pm 1.20

Shortening-based palm oil (SH-BPO) and sunflower wax-based oleogel (SFW-BO).

Values are means \pm SD of three replicates, different superscripts letters in the same column indicate significant differences ($p \leq 0.05$).

Table 7.

Sensory evaluation of cupcake samples prepared from sunflower wax-based oleogel, shortening-based palm oil, and their blends

Samples	Appearance	Texture	Taste	Flavor	Color	Overall acceptability
100%SH-BPO	8.33 \pm 0.58 ^a	7.33 \pm 1.15 ^a	7.50 \pm 0.50 ^a	8.00 \pm 0.50 ^a	7.83 \pm 0.29 ^a	8.16 \pm 0.29 ^a
20%SFW-BO	8.00 \pm 1.00 ^a	7.00 \pm 0.50 ^a	7.50 \pm 0.50 ^a	8.00 \pm 0.50 ^a	7.66 \pm 0.58 ^a	7.83 \pm 0.76 ^a
40%SFW-BO	8.33 \pm 1.15 ^a	7.83 \pm 0.77 ^a	7.50 \pm 0.50 ^a	8.16 \pm 0.58 ^a	7.83 \pm 0.29 ^a	8.00 \pm 0.86 ^a
60%SFW-BO	8.50 \pm 0.5 ^a	7.66 \pm 0.58 ^a	7.50 \pm 0.50 ^a	7.66 \pm 0.76 ^a	7.66 \pm 0.57 ^a	8.16 \pm 0.29 ^a
80%SFW-BO	8.50 \pm 0.5 ^a	7.50 \pm 0.50 ^a	7.66 \pm 0.58 ^a	7.16 \pm 1.26 ^a	7.83 \pm 0.28 ^a	8.00 \pm 0.86 ^a
100%SFW-BO	8.50 \pm 0.86 ^a	7.10 \pm 0.36 ^a	7.33 \pm 0.57 ^a	8.00 \pm 0.50 ^a	8.00 \pm 1.00 ^a	7.83 \pm 0.58 ^a

Shortening-based palm oil (SH-BPO) and sunflower wax-based oleogel (SFW-BO).

Values are means \pm SD of ten replicates, different superscripts letters in the same column indicate significant differences ($p \leq 0.05$).

The enhanced aerated structure is the primary reason for this progressive reduction in hardness, a well-documented principle in baking science where higher specific volume correlates with softer texture (Tang & Ghosh, 2021). Springiness increased significantly at 80% and 100% substitution levels, which can be attributed to the elastic nature of the SFW crystal network, a phenomenon also noted by Wettlaufer and Flöter (2022).

Chewiness and gumminess decreased with higher oleogel levels, while cohesiveness showed no significant differences.

It is important to contextualize these textural outcomes within the broader literature. Our results are consistent with several studies on wax-based oleogels. For example, Khiabani, Tabibiazar, Roufegarinejad, Hamishehkar and Alizadeh, (2020) and Martínez-Velasco, Trujillo-Ramírez, Bustos-Vázquez and Cervantes-Arista (2024) also found that replacing palm fat with carnauba wax and candelilla wax oleogels, respectively, led to softer textures in cakes. In contrast, Ramadhan et al. (2024) reported that a marine-based oleogel increased hardness in cakes. This discrepancy underscores that functional performance is highly specific to the gelator type, with SFW demonstrating a particular aptitude for creating a desirable, soft, and aerated crumb in bakery applications.

Sensory quality is a critical factor influencing consumers' purchasing decisions. Evaluations are essential when reformulating products to ensure that modified versions are comparable to conventional ones (Schubert et al., 2022).

The performed sensory evaluation that included appearance, texture, taste, flavor, color, and overall acceptability revealed no statistically significant differences among cupcakes prepared with SH-BPO, SFW-BO, or their blends (Table 7). All attributes received consistently high scores (7.0 to 8.5), demonstrating that full replacement did not negatively influence sensory perception. These positive outcomes are critical for consumer adoption. This aligns with findings by Yılmaz and Öğütçü (2015) for cookies and Baştürk, Badem and Ceylan, (2023) for cakes, confirming that well-structured oleogels do not impart negative sensory characteristics. The high OBC of SFW-BO prevented any waxy or greasy mouthfeel, and the purification process ensured a neutral flavor profile. Furthermore, De-mirkesen and Mert (2019) found that partial substitution of shortening with beeswax-based oleogel in gluten-free cakes maintained high sensory scores.

CONCLUSIONS

This study conclusively demonstrates that sunflower wax-based oleogel (SFW-BO) is a technologically superior and nutritionally advantageous alternative to traditional palm-based shortening. The strategic upcycling of sunflower wax, a by-product refining, into a high-value oleogelator not only provides a solution for waste valorization but also aligns with circular economy principles by creating a sustainable, health-promoting food ingredient. The SFW-BO exhibited exceptional oil-binding capacity and thermal stability, which directly translated to enhanced cupcake

quality, including greater specific volume, a softer, more elastic crumb, and a marked reduction in saturated fatty acid content. Significantly, these improvements were achieved without affecting sensory acceptability, a key criterion for consumer acceptance. For successful commercial translation, future work should prioritize scaling up the purification and oleoelation processes and conducting comprehensive oxidative stability studies to ensure product quality and shelf-life.

AUTHOR CONTRIBUTIONS

Conceptualization, A.G.A.E. and H.A.R.M.; Methodology, all authors; Investigation, A.G.A.E. and H.A.R.M.; writing-original draft preparation, Writing-review and editing, A.G.A.E., H.A.R.M. and A.A.; Supervision, A.A.

DATA AVAILABILITY STATEMENT

Data contained within the article.

ACKNOWLEDGEMENTS

This research received no funding.

CONFLICT OF INTEREST

The authors declare no conflict of interest. No funding was received for this study. The authors had full control of the study design, data collection, analyses, interpretation of results, and writing of the manuscript.

REFERENCES

Alvarez-Ramirez, J. (2016). Thermal and rheological properties of sponge cake batters and texture and microstructural characteristics of sponge cake made with native corn starch in partial or total replacement of wheat flour. *LWT-Food Science and Technology*, 70, 46–54. <https://doi.org/10.1016/j.lwt.2016.02.031>

Alvarez-Ramirez, J., Vernon-Carter, E. J., Carrera-Tarela, Y., Garcia, A., & Roldan-Cruz, C. (2020). Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. *LWT-Food Science and Technology*, 130, 109701. <https://doi.org/10.1016/j.lwt.2020.109701>

American Association of Cereal Chemists (AACC). (2002). Approved methods of the American Association of Cereal Chemists (11th ed.). Saint Paul, Minnesota, USA: American Association of Cereal Chemists.

American Heart Association Nutrition Committee. (2006). Lichtenstein, A. H., Appel, L. J., Brands, M., Carnethon, M., Daniels, S., Franch, H. A., Franklin, B., Kris-Etherton, P., & Harris, W. S. (2006). Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. *Circulation*, 114(1), 82–96. <https://doi.org/10.1161/CIRCULATIONAHA.106.176158>

AOAC. (2019). *Official methods of analysis of AOAC International* (20th ed.). Gaithersburg, MD, USA: Association of Official Analytical Chemists.

Baştürk, A., Badem, S., & Ceylan, M. M. (2023). Propolis and carnauba wax-based safflower oil oleogels as fat substitutes in cakes: Production, oxidative stability, and characterization. *European Journal of Lipid Science and Technology*, 125(9), 2200213. <https://doi.org/10.1002/ejlt.202200213>

Blake, A. I., & Marangoni, A. G. (2015). The effect of shear on the microstructure and oil binding capacity of wax crystal networks. *Food Biophysics*, 10(4), 403–415. <https://doi.org/10.1007/s11483-015-9398-z>

Carelli, A. A., Frizzera, L. M., Forbito, P. R., & Crapiste, G. H. (2002). Wax composition of sunflower seed oils. *Journal of the American Oil Chemists' Society*, 79(8), 763–768. <https://doi.org/10.1007/s11746-002-0558-8>

Chalapud, M. C., Baümler, E. R., & Carelli, A. A. (2017). Characterization of waxes and residual oil recovered from sunflower oil winterization waste. *European Journal of Lipid Science and Technology*, 119(2), 1500608. <https://doi.org/10.1002/ejlt.201500608>

Co, E. D., & Marangoni, A. G. (2012). Organogels: An alternative edible oil-structuring method. *Journal of the American Oil Chemists' Society*, 89, 749–780. <https://doi.org/10.1007/s11746-011-1953-2>

Codex Alimentarius Commission. (2009). *Codex standard for named vegetable oils – CODEXSTAN 210-1999*. Rome, Italy: Food and Agriculture Organization of the United Nations & World Health Organization.

Dassanayake, L. S. K., Kodali, D. R., Ueno, S., & Sato, K. (2011). Physical properties of organogels made of rice bran wax and vegetable oils. In Alejandro G. Marangoni & Nissim Garti (Eds.), *Edible oleogels: Structure and health implications* (pp. 149–172). American Oil Chemists' Society Press. <https://doi.org/10.1016/B978-0-9830791-1-8.50010-3>

De Souza, R. J., Mente, A., Maroleanu, A., Cozma, A. I., Ha, V., Kishibe, T., Uleryk, E., Budylowski, P., Schünemann, H., Beyene, J., & Anand, S.S. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all-cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. *BMJ*, 351, h3978. <https://doi.org/10.1136/bmj.h3978>

Demirkesen, I., & Mert, B. (2019). Utilization of beeswax oleogel-shortening mixtures in gluten-free bakery products. *Journal of the American Oil Chemists' Society*, 96(5), 545–554. <https://doi.org/10.1002/aocs.12195>

Dimakopoulou-Papazoglou, D., Zampouni, K., Katsanidis, E., Prodromidis, P., & Moschakis, T. (2024).

Microstructure, physical properties, and oxidative stability of olive oil oleogels composed of sunflower wax and monoglycerides. *Gels*, 10, 195. <https://doi.org/10.3390/gels10030195>

Doan, C. D., Tavernier, I., Okuro, P. K., & Dewettinck, K. (2018). Internal and external factors affecting the crystallization, gelation and applicability of wax-based oleogels in food industry. *Innovative Food Science & Emerging Technologies*, 45, 42–52. <https://doi.org/10.1016/j.ifset.2017.09.018>

Dubey, P., Sharma, P., & Kumar, V. (2017). FTIR and GC-MS spectral datasets of wax from *Pinus roxburghii* Sarg. needles biomass. *Data Brief*, 15, 615–622. <https://doi.org/10.1016/j.dib.2017.09.074>

Feng, Z., He, D., Zhang, L., Li, Q., Xue, C., Yi, X., Liao, L., Pei, Z., & Shen, X. (2025). Preparation of myofibrillar protein oleogels by emulsion template method: Application of fat substitute for sponge cakes. *LWT-Food Science and Technology*, 216, 117350. <https://doi.org/10.1016/j.lwt.2025.117350>

Gao, P., Liu, Y., Wang, S., Huang, C., Zhong, W., Yin, J., Hu, C., He, D., & Wang, X. (2024). Effects of different oleogelators on the structural properties and composition of iron walnut-oil oleogels. *Ultrasonics Sonochemistry*, 102, 106729. <https://doi.org/10.1016/j.ultsonch.2023.106729>

Ghotra, B. S., Dyal, S. D., & Narine, S. S. (2002). Lipid shortenings: A review. *Food Research International*, 35, 1015–1048. [https://doi.org/10.1016/S0963-9969\(02\)00163-3](https://doi.org/10.1016/S0963-9969(02)00163-3)

Hughes, N. E., Marangoni, A. G., Wright, A. J., Rogers, M. A., & Rush, J. W. E. (2009). Potential food applications of edible oil organogels. *Trends in Food Science & Technology*, 20(10), 470–480. <https://doi.org/10.1016/j.tifs.2009.06.002>

Hussien, H. A., Afify, H., & Shabib, Z. (2023). Production and quality evaluation of cupcakes enriched with prebiotics. *Journal of Food Technology Research*, 2(3), 55–67. <https://doi.org/10.21608/ftrj.2023.212146.1024>

Hwang, H. S., Kim, S., Singh, M., Winkler-Moser, J. K., & Liu, X. X. (2012). Organogel formation of soybean oil with waxes. *Journal of the American Oil Chemists' Society*, 89, 639–647. <https://doi.org/10.1007/s11746-011-1953-2>

International Organization for Standardization. (2017). *ISO 12966-2: Animal and vegetable fats and oils – Gas chromatography of fatty acid methyl esters – Part 2: Preparation of methyl esters of fatty acids*. Geneva: ISO.

Khiabani, A. A., Tabibiazar, M., Roufegarinejad, L., Hamishehkar, H., & Alizadeh, A. (2020). Preparation and characterization of carnauba wax/adipic acid oleogel: A new reinforced oleogel for application in cake and beef burger. *Food Chemistry*, 333, 127446. <https://doi.org/10.1016/j.foodchem.2020.127446>

Knuitinen, U., & Norrman, A. (2000, October). Wax analysis in conservation objects by solubility studies, FTIR and DSC. Paper presented at the 15th World Conference on Nondestructive Testing, Rome, Italy. <https://www.ndt.net/article/wcndt00/index.htm>

Lim, J., Hwang, H., & Lee, S. (2017). Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties. *Journal of Applied Biological Chemistry*, 60(1), 17–22. <https://doi.org/10.1007/s13765-016-0241-y>

Liu, Y., Guan, E., Li, M., Bian, K., Wen, J., & Ren, C. (2020). Improvement of cake quality by superheated steam treatment of wheat. *Journal of Cereal Science*, 95, 103046. <https://doi.org/10.1016/j.jcs.2020.103046>

Lutsenko, M., Kharytonov, M., & Peron, G. (2024). Production of edible lecithin from sunflower-oil refining waste. *International Journal of Environmental Studies*, 81(1), 432–445. <https://doi.org/10.1080/00207233.2024.2314845>

Marangoni, A. G., & Garti, N. (Eds.) (2018). *Edible oleogels: Structure and health implication* (2nd ed.). Academic Press and AOCS Press.

Martínez-Velasco, A., Trujillo-Ramírez, D., Bustos-Vázquez, G., & Cervantes-Arista, C. (2024). The use of candelilla wax/canola oil oleogel in the formulation of sponge cake bread improves morphostructural and sensory properties. *Discover Food*, 4(1), 160. <https://doi.org/10.21203/rs.3.rs-4613222/v1>

Mondul, A. M., Moore, S. C., Weinstein, S. J., Karoly, E. D., Sampson, J. D., & Albanes, D. (2015). Metabolomic analysis of prostate cancer risk in a prospective cohort: The alpha-tocopherol, beta-carotene cancer prevention (ATBC) study. *International Journal of Cancer*, 137(9), 2124–2132. <https://doi.org/10.1002/ijc.29576>

Mozaffarian, D., Micha, R., & Wallace, S. (2010). Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: A systematic review and meta-analysis of randomized controlled trials. *PLoS Medicine*, 7(3), e1000252. <https://doi.org/10.1371/journal.pmed.1000252>

Öğütçü, M., & Yılmaz, E. (2015). Characterization of hazelnut oil oleogels prepared with sunflower and carnauba waxes. *International Journal of Food Properties*, 18, 1741–1755. <https://doi.org/10.1080/10942912.2014.933352>

Onacik-Gür, S., & Zbikowska, A. (2019). Effect of high-oleic rapeseed oil oleogels on the quality of short-dough biscuits and fat migration. *Journal of Food Science and Technology*, 57, 1609–1618. <https://doi.org/10.1007/s13197-019-04193-8>

Ozdemir-Orhan, N., Eroglu, Z., & Omac, B. (2024). Changes in quality characteristics and inactivation of *Salmonella* in cake, including oleogel used as a fat replacer, baked with two different methods. *Journal of Food Science*, 89(12), 9595–9607. <https://doi.org/10.1111/1750-3841.17540>

Özer, E. D., & Özer, C. O. (2023). Optimization of olive oil oleogel-based emulsion composition: Effect of oleogel composition on emulsion characteristics. *Journal of Oleo Science*, 72(2), 131–138. <https://doi.org/10.5650/jos.ess22282>

Patel, A. R., Babaahmadi, M., Lesaffer, A., & Dewettinck, K. (2015). Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. *Journal of Agricultural and Food Chemistry*, 63, 4862–4869. <https://doi.org/10.1021/acs.jafc.5b01548>

Qiu, H., Zhang, H., & Eun, J. (2024). Oleogel classification, physicochemical characterization methods, and typical cases of application in food: A review. *Food Science and Biotechnology*, 33, 1273–1293. <https://doi.org/10.1007/s10068-023-01501-z>

Rahman, M. S. (2009). *Food properties handbook* (2nd ed.). CRC Press. <https://doi.org/10.1201/9781420003093>

Ramadhan, W., Firdaos, A. N., Krisnawan, W. V., Suseno, S. H., Riyanto, B., Trilaksani, W., & Santoso, J. (2024). Synthesis of a sustainable marine oleogel and its application as a fat substitute in a sponge cake system. *Sustainable Food Technologies*, 2(4), 1022–1032. <https://doi.org/10.1039/d3fb00239j>

Redondas, C. Z., Baümler, E. R., & Carelli, A. A. (2020). Sunflower wax recovered from oil tank settling: Revaluation of a waste product from the oilseed industry. *Journal of the Science of Food and Agriculture*, 100, 201–211. <https://doi.org/10.1002/jsfa.10017>

Renzyaeva, T. V. (2013). On the role of fats in baked flour goods. *Foods Raw Materials*, 1(1), 19–25. <https://doi.org/10.12737/1513>

Rios, R. V., Pessanha, M. D. F., Almeida, P. F., Viana, C. L., & Lannes, S. C. d. S. (2014). Application of fats in some food products. *Food Science and Technology*, 34, 3–15. <https://doi.org/10.1590/S0101-20612014000100001>

Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2009). Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid/canola oil organogels. *Current Opinion in Colloid & Interface Science*, 14(1), 33–42. <https://doi.org/10.1016/j.cocis.2008.02.004>

Roufegarinejad, L., Ahmadi, G., Icyer, N. C., Toker, O. S., & Khiabani, A. H. (2024). Fabrication of healthier monoglyceride-based oleogel containing linseed-sunflower oil and its application as shortening in cake formulation. *International Journal of Food Science & Technology*, 59(1), 299–308. <https://doi.org/10.1111/ijfs.16809>

Roufegarinejad, L., Dehghani, S., Bakhshi, S., Toker, O. S., Pirouzian, H. R., & Khiabani, A. H. (2024). Oleogelation of sunflower-linseed oils with carnauba wax as an innovative strategy for shortening substitution in cakes. *Food Chemistry*, 437, 137745. <https://doi.org/10.1016/j.foodchem.2023.137745>

Ruiz-Núñez, B., Dijck-Brouwer, D. J., & Muskiet, F. A. (2016). The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. *Journal of Nutritional Biochemistry*, 36, 1–20. <https://doi.org/10.1016/j.jnutbio.2015.12.007>

Santos, M. A., Magalhães, A. E. R., Okuro, P. K., Steel, C. J., & Cunha, R. L. (2024). High internal phase emulsion-template oleogels stabilized by sodium caseinate: Quercetin complexes and potential application in pound cakes. *Journal of Food Engineering*, 366, 111860. <https://doi.org/10.1016/j.jfoodeng.2023.111860>

Schubert, M., Erlenbusch, N., Wittland, S., Nikolay, S., Hetzer, B., & Matthäus, B. (2022). Rapeseed oil-based oleogels for the improvement of the fatty acid profile using cookies as an example. *European Journal of Lipid Science and Technology*, 124(11), 2200033. <https://doi.org/10.1002/ejlt.202200033>

Senyilmaz-Tiebe, D., Pfaff, D. H., Virtue, S., Schwarz, K. V., Fleming, T., Altamura, S., Muckenthaler, M. U., Okun, J. G., Vidal-Puig, A., Nawroth, P., & Teleman, A. A. (2018). Dietary stearic acid regulates mitochondria in vivo in humans. *Nature Communications*, 9, 3129. <https://doi.org/10.1038/s41467-018-05614-6>

Snedecor, G. W., & Cochran, W. G. (1982). *Statistical methods* (6th ed.). Iowa State University Press, Iowa, U.S.A.

Stanciu, A. (2025). Application of FTIR spectroscopy in the analysis and quality assessment of sunflower oil. *Journal of Research in Chemistry*, 6(1), 113–117. <https://doi.org/10.22271/reschem.2025.v6.i1b.178>

Tang, Y. R., & Ghosh, S. (2021). Canola protein thermal denaturation improved emulsion-templated oleogelation and its cake-baking application. *RSC Advances*, 11(41), 25141–25157. <https://doi.org/10.1039/d1ra02250d>

Vanrooijen, M. A., Plat, J., Zock, P. L., Blom, W. A. M., & Mensink, R. P. (2021). Effects of consecutive mixed meals high in palmitic acid or stearic acid on 8-h postprandial lipemia and glycemia in healthy-weight and overweight men and postmenopausal women: A randomized controlled trial. *European Journal of Nutrition*, 60(7), 3659–3667. <https://doi.org/10.1007/s00394-021-02530-2>

Wettlaufer, T., & Flöter, E. (2022). Wax based oleogels and their application in sponge cakes. *Food & Function*, 13(18), 9419–9433. <https://doi.org/10.1039/D2FO00563H>

(WHO)World Health Organization. (2003). *Diet, nutrition and the prevention of chronic diseases: Report of a joint WHO/FAO expert consultation* (WHO Technical Report Series, No. 916). Geneva: WHO. https://iris.who.int/bitstream/handle/10665/42665/WHO_TRS_916.pdf

Yang, S., Yang, G., Chen, X., Chen, J., & Liu, W. (2020). Interaction of monopalmitate and carnauba wax on the properties and crystallization behavior of soybean oleogel. *Grain & Oil Science and Technology*, 3, 49–56. <https://doi.org/10.1016/j.gaost.2020.05.001>

Yi, Y., Yao, J., Xu, W., Wang, L., & Wang, H. (2019). Investigation on the quality diversity and quality FTIR characteristic relationship of sunflower seed oils. *RSC Advances*, 9, 27347–27360. <https://doi.org/10.1039/c9ra04848k>

Yılmaz, E., & Öğütçü, M. (2015). The texture, sensory properties and stability of cookies prepared with wax oleogels. *Food & Function*, 6(4), 1194–1204. <https://doi.org/10.1039/C5FO00019J>

OLEOGEL NA BAZI SUNCOKRETOVOG VOSKA IZ OTPADA PRERADE ULJA KAO ALTERNATIVA MARGARINU U MAFINU

Asmaa Gamal Abd El-hamied^{*1}, Hanaa A.R. Mohamed², Ahmed Abdelgawad³

¹Centar za poljoprivredna istraživanja, Institut za istraživanja u prehrambenim tehnologijama, Odsek za inženjerstvo i pakovanje, Giza, Egipt

²Centar za poljoprivredna istraživanja, Institut za istraživanja u prehrambenim tehnologijama, Istraživačka jedinica eksperimentalne kuhinje, Giza, Egipt

³Centar za poljoprivredna istraživanja, Institut za istraživanja u prehrambenim tehnologijama, Odsek za tehnologiju ulja i masti, Giza, Egipt

Sažetak: U ovom istraživanju korišćen je vosak suncokreta, nusproizvod dobijen iz otpada nastalog tokom rafinacije suncokretnog ulja, za pripremu oleogela na bazi suncokretnog ulja (SFW-BO) kako bi se procenio njegov potencijal kao potpune zamene za konvencionalnu namensku mast (šortening) na bazi palminog ulja (SH-BPO) u finim pekarskim proizvodima. Novina ove studije ogleda se u upotrebi voska suncokreta dobijenog direktno iz otpada rafinacije ulja, umesto komercijalnog voska, čime se naglašava održivo korišćenje resursa. Fourier-transformaciona infracrvena (FTIR) spektroskopija potvrdila je efikasnost procesa prečišćavanja u dobijanju voska visokog stepena čistoće. Fizikohemijska karakterizacija pokazala je da 100% SFW-BO poseduje superiornu sposobnost vezivanja ulja ($OBC \approx 99\%$) i višu tačku topljenja ($53,2^{\circ}\text{C}$) u poređenju sa SH-BPO ($40,10^{\circ}\text{C}$). Analiza profila masnih kiselina pokazala je da povećanje udela SFW-BO značajno smanjuje sadržaj zasićenih masnih kiselina sa 50,61% (100% SH-BPO) na 11,15% (100% SFW-BO), uz istovremeno povećanje udela nezasićenih masti. Mafini formulisani sa SFW-BO mešavinama pokazali su povećan specifični volumen i smanjenu tvrdoću, pri čemu je uzorak sa 100% zamenom postigao najveći volumen ($1,86 \text{ cm}^3/\text{g}$). Analize aktivnosti vode i senzorske evaluacije ukazale su na odsustvo značajnih razlika između mafina sa šorteningom i onih sa oleogelom, što sugerise uporedivu mikrobiološku stabilnost i prihvatljivost od strane potrošača. Ovi rezultati potvrđuju da oleogel od voska suncokreta dobijenog iz otpada rafinacije predstavlja funkcionalno robusnu i nutritivno povoljniju alternativu konvencionalno korišćenoj namenskoj masnoći, omogućavajući proizvodnju pekarskih proizvoda sa smanjenim sadržajem zasićenih masti bez kompromisa u tehnološkim performansama ili senzorskom kvalitetu.

Ključne reči: vosak suncokreta, oleogel, šortening, mafinsi, zasićene masne kiseline, otpad uljarske prerade

Received: 23 September 2025 / Received in revised form: 21 November 2025 / Accepted: 21 November 2025

Available online: February 2025

This open-access article is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit <https://creativecommons.org/licenses/by/4.0/> or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

© The Author(s) 0000