PROPERTIES OF DIFFERENT GENOTYPES OF SILAGE MAIZE HYBRIDS

  • Valentina Nikolić Maize Research Institute, Zemun Polje
Keywords: maize hybrids, lignocellulosic fibres, in vitro dry matter digestibility

Abstract


   

The aim of this study was to observe the properties of ten maize hybrids from Serbia including agronomic traits, lignocellulosic fibre composition and in vitro dry matter digestibility. Five yellow kernel dent hybrids and five analogue red kernel hybrids were used in this study to evaluate the agronomic traits, dry matter content of the whole plant, lignocellulosic fibre composition, ratios between different fibres, in vitro dry matter and NDF digestibility. Correlation coefficients between the investigated traits of the maize hybrids were assessed. Even though the results of our study showed variations regarding nutritional composition of the whole maize plant between the investigated maize hybrids, the hybrid and the differences in kernel colour (yellow or red) did not considerably affect the properties that influence quality of the maize hybrids for silage production. The highest IVDMD was determined in yellow kernel hybrid ZP 388, while the maximum NDFD was detected in the red kernel hybrid ZP 606red which also showed the lowest ADL/NDF and ADF/NDF ratios. The results indicate that all of the hybrids used in this study are good candidates for the production of high-quality silage for ruminant nutrition.

References

Aufrere, J., Baumont, R., Delaby, L., Peccatte, J.-R., Andrieu, J., Andrieu, J.-P., & Dulphy J.-P. (2007). Prevision de la digestibilite des fourages par la méthode pepsine-cellulase. Le point sur les équations proposées. INRA Productions Animales 20, 129-136. https://doi.org/10.20870/productions-animales.2007.20.2.3445

Barrière, Y., Alber, D., Dolstra, O., Lapierre, C., Motto, M., Ordas, A., Van Waes, J., Vlasminkel, L., Welcker, C., & Monod, J. P. (2005). Past and prospects of forage maize breeding in Europe: I. The grass cell wall as basis of genetic variation and future improvements in feeding value. Maydica, 50, 259-274. Retrieved from http://hdl.handle.net/10261/42856

Barrière, Y., Guillaumie, S., Denoue, D., Pichon, M., Goffner, D., & Martinant, J. (2018). Investigating the unusually high cell wall digestibility of the old INRA early flint F4 maize inbred line. Maydica, 62(3), 21. Retrieved from https://journals-crea.4science.it/index.php/maydica/article/view/1581

Bertoia, L. M., & Aulicino, M. B. (2014). Maize forage aptitude: Combining ability of inbred lines and stability of hybrids. The Crop Journal, 2, 407-418. https://doi.org/10.1016/j.cj.2014.07.002

Bittman, S. (2004). A production guide for coastal British Columbia and the Pacific Northwest. Quality of corn silage (Chapter 8). In Shabtai Bittman & C. Grant Kowalenko (Eds.), Advanced silage corn management. Agassiz: Pacific Field Corn Associa-tion.

Crevelari, J. A., Durães, N. N. L., Bendia, L. C. R., da Silva, A. J., Azevedo, F. H. V., Azeredo, V. C., & Pereira, M. G. (2018). Assessment of agronomic performance and prediction of genetic gains through selection indices in silage corn. Australian Journal of Crop Science, 12(5), 800-807. https://doi.org/10.21475/ajcs.18.12.05.PNE1004

Eckhoff, S. R., & Watson, S. A. (2009). Corn and sorghum starches: Production. In J. N. BeMiller & R. L. Whistler (Eds.), Starch: Chemistry and technology (3rd ed., pp. 373-439). Academic Press.

Frey, T. J., Coors, J. G., Shaver, R. D., Lauer, J. G., Eilert, D. T., & Flannery, P. J. (2004). Selection for silage quality in the Wisconsin quality synthetic and related maize populations. Crop Science, 44, 1200-1208. https://doi.org/10.2135/cropsci2004.1200

Khan, H. Z., Shabir, M. A., Basit, A., Iqbal, A., Ra-sheed, A., Saleem, M. F., & Shabir, K. (2019). Comparative study of different agronomic traits of maize (Zea mays L.) genotypes. Journal of Agriculture and Basic Sciences, 4(1), 18-26. (ISSN Online: 2518-4210) http://www.jabsjournal.com

Khan, N. A., Peiqiang, Y., Ali, M., Cone, J. W., & Hendriks, W. H. (2015). Nutritive value of maize silage in relation to dairy cow performance and milk quality. Journal of the Science of Food and Agriculture, 95, 238-252. https://doi.org/10.1002/jsfa.6703

Kokić, B. M., Dokić, L. P., Čolović, R. R., Banjac, V. V., Jovanović, R. D., Popović, S. J., & Lazarević, J. M. (2018). The possibility of in vitro multi-enzymatic method application for the assessment of the influence of thermal treatments on organic matter digestibility of feed for ruminants. Food and Feed Research, 45(1), 53-58. https://doi.org/10.5937/FFR1801053K

Kruse, S., Herrmann, A., Kornher, A., & Taube, F. (2008). Evaluation of genotype and environmental variation in fibre content of silage maize using a model-assisted approach. European Journal of Agronomy 28, 210–223. https://doi.org/10.1016/j.eja.2007.07.007

Liu, J., Fernie, A. R., & Yan, J. (2020). The past, present, and future of maize improvement: Domestication, genomics, and functional genomic routes toward crop enhancement. Plant Communications, 1(1), Article 10010, 1-19. https://doi.org/10.1016/j.xplc.2019.100010

Mertens, D. R. (1992). Critical conditions in determining detergent fiber. In Proceedings of the Forage Analysis Workshop (pp. C1–C8). Denver, Colorado. Omaha, NE: National Forage Testing Association.

Milašinović Šeremešić, M. S., Radosavljević, M. M., Srdić, J. Ž., Tomičić, Z. M., & Đuragić, O. M. (2012). Physical traits and nutritional quality of se-lected Serbian maize genotypes differing in kernel hardness and colour. Food and Feed Research, 46, 51-59. https://doi.org/10.5937/FFR1901051M

Milašinović-Šeremešić, M., Radosavljević, M., Terzić, D., & Nikolić, V. (2017). The utilisable value of the maize plant (biomass) for silage. Journal on Processing and Energy in Agriculture, 21, 86-90. https://doi.org/10.5937/JPEA1702086S

Moore, K. J., & Jung, H.-J. G. (2001). Lignin and fiber digestion. Journal of Range Management, 54, 420-430. https://doi.org/10.2458/azu_jrm_v54i4_moore

Semenčenko, V., Milašinović-Šeremešić, M., Radosav-ljević, M., Terzić, D., Srdić, J., & Filipović, M. (2016). Potentials of ZP maize hybrids for silage production. In Proceeedings of XVII International Feed Technology Symposium and the III Interna-tional Congress "Food Technology Quality and Safety" - FoodTech 2016 (pp. 119-124). Novi Sad, Serbia.

Simić, M., Žilić, S., Šimurina O., Filipčev, B., Škrobot, D., & Vančetović, J. (2018). Effects of anthocyanin-rich popping maize flour on the phenolic profile and the antioxidant capacity of mix-bread and its physical and sensory properties. Polish Journal of Food and Nutrition Sciences, 68(4), 299-308. https://doi.org/10.2478/pjfns-2018-0002

Sutch, R. (2011). The impact of the 1936 Corn Belt Drought on American farmers’ adoption of hybrid corn. In G. D. Libecap & R. H. Steckel (Eds.), The economics of climate change: Adaptations past and present (pp. 195 – 223). Chicago: University of Chicago Press.

Terzić, D., Radosavljević, M., Milašinović-Šeremešić, M., Jovanović, Ž., & Nikolić, V., (2020). Yield and biomass quality of the whole plant of four maize hybrids for silage production. Journal on Processing and Energy in Agriculture, 24, 6-8. https://doi.org/10.5937/jpea24-25502

Van Soest, P.J., & Robertson, J. B. (1980). System of analysis for evaluating fibrous feeds. In W. J. Pigden, C. C. Balch & M. Graham (Eds.), Standardization of analytical methodology in feeds (pp. 49-60). Ottawa, Canada: International Research Development Center.

Žilić, S., Serpen, A., Akillioğlu, G., Gökmen, V., & Vančetović, J. (2012). Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry, 60, 1224-1231. https://doi.org/10.1021/jf204367

Published
2020/11/25
Section
Original research paper