TOLERANCE OF AUTOCHTHONOUS LACTIC ACID BACTERIA TO DIFFERENT PROCESSING CONDITIONS IN VITRO

  • Mirjana Grujović University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Kragujevac, Serbia
Keywords: lactic acid bacteria, cheese microbiology, processing conditions, growth ability

Abstract


In this paper, the effect of different temperatures, pH, and NaCl concentration on the growth of autochthonous lactic acid bacteria isolated from traditionally made Serbian cheese (Sokobanja area) was investigated by using the spectrophotometric method. Growth of tested Lactobacillus (Lb. fermentum, Lb. plantarum, and Lb. brevis) and Lactococcus lactis subsp. lactis biovar. diacetylactis five isolates were better in acidic pH, while the growth of Enterococcus isolates (E. durans, E. faecium, and E. faecalis) was better in basic pH, at 37 °C. At 4 °C after 24 h, none of the tested bacteria showed growth. Since the autochthonous isolates were tolerant to a tested range of dairy processing conditions, further studies need to include the characterization of enzymatic activity of selected isolates, as well as the ability to use these isolates like starter cultures or food supplements in dairy or non-dairy products.

References

Abeijón, M. C., Medina, R. B., Katz, M. B., & Gonzalez, S. N. (2006). Technological properties of Enterococcus faecium isolated from ewe's milk and cheese with importance for flavour development. Canadian Journal of Microbiology, 52(3), 237-245. https://doi.org/10.1139/w05-136

Adamberg, K., Kask, S., Laht, T.M., & Paalme, T. (2003). The effect of temperature and pH on the growth of lactic acid bacteria: A pH-auxostat study. International Journal of Food Microbiology, 85, 171-183. https://doi.org/10.1016/S0168-1605(02)00537-8

Baher Abd El Khalek, M. E., Hassan, Z. M. R., Mabrouk, A. M. M., Sadek, Z. I. M., Magdoub, M. N. I., & Tawfik, N. F. (2018). Properties of low salt soft cheese supplemented with probiotic cultures. International Journal of Advanced Research in Biological Science, 5, 1-10. http://dx.doi.org/10.22192/ijarbs.2018.05.02.001

Blana, V. A., Grounta, A., Tassou, C. C., Nychas, G. J. E., & Panagou, E. Z. (2014). Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives. Food Microbiology, 38, 208-218. https://doi.org/10.1016/j.fm.2013.09.007

Braiek, O. B., & Smaoui, S. (2019). Enterococci: between emerging pathogens and potential probiotics. BioMed Research International, 2019, 1 – 13. https://doi.org/10.1155/2019/5938210

Fisher, K., & Phillips, C. (2009). The ecology, epidemiology and virulence of Enterococcus. Microbiology, 155,1749–1757. https://doi.org/10.1099/mic.0.026385-0

Fontana, L., Bermudez-Brito, M., Plaza-Diaz, J., Muñoz-Quezada, S., & Gil, A. (2013). Sources, isolation, characterisation and evaluation of probiotics. British Journal of Nutrition, 109, 35-50. https://doi.org/10.1017/S0007114512004011

Fox, P. F., Guinee, T. P., Cogan, T. M., & McSweeney, P. L. H. (2017). Biochemistry of cheese ripening. In P. F. Fox, T. P. Guinee, T. M. Cogan, & P. L. H. McSweeney (Eds.), Fundamentals of cheese science (pp. 391–44). Boston: Springer.

Grujović, M., Mladenović, K., Žugić Petrović, T., & Čomić, L. (2019). Assessment of the antagonistic potential and ability of biofilm formation of Enterococcus spp. isolated from Serbian cheese. Veterinarski arhiv, 89, 653–667. https://doi.org/10.24099/vet.arhiv.0485

Guo, L., Li, T., Tang, Y., Yang, L., & Huo, G. (2016). Probiotic properties of Enterococcus strains isolated from traditional naturally fermented cream in China. Microbial Biotechnology, 9, 737-745. https://doi.org/10.1111/1751-7915.12306

Gutiérrez-Méndez, N., Rodríguez-Figueroa, J. C., Gonzá-lez-Cordova, A. F., Nevárez-Moorillón, G. V., Rivera-Chavira, B., & Vallejo-Cordoba, B. (2010). Phenotypic and genotypic characteristics of Lacto-coccus lactis strains isolated from different ecosystems. Canadian Journal of Microbiology, 56, 432-439. https://doi.org/10.1139/W10-026

Hernandez-Hernandez, O. A., Muthaiyan, F. J., Moreno, A., Montilla, M. L., Sanz, S., & Rickeet, C. (2012). Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus. Food Microbiology, 30, 355–361. https://doi.org/10.1016/j.fm.2011.12.022

Ibourahema, C., Dauphin, R. D., Jacqueline, D., & Thonart, P. (2008). Characterization of lactic acid bacteria isolated from poultry farms in Senegal. African Journal of Biotechnology, 7, 2006–2012. https://doi.org/10.5897/AJB2008.000-5048

Ivanov, I. T., Boytcheva, S., & Mihailova, G. (1999). Parallel study of thermal resistance and permeability barrier stability of Enterococcus faecalis as affected by salt composition, growth temperature and pre-incubation temperature. Journal of Thermal Biology, 24,217–227. https://doi.org/10.1016/S0306-4565(99)00012-1

Kavitha, J. R., & Devasena, T. (2013). Isolation, chara-cterization, determination of probiotic properties of lactic acid bacteria from human milk. Journal of Pharmaceutical and Biological Sciences, 7, 1-7. https://doi.org/10.9790/3008-0730107

Khemariya, P., Singh, S., Nath, G., & Gulati, A. K. (2017). Probiotic Lactococcus lactis: A review. Turkish Journal of Agriculture - Food Science and Technology, 5, 556–562. https://doi.org/10.24925/turjaf.v5i6.556-562.690

Lyu, C., Zhao, W., Peng, C., Hu, S., Fang, H., Hua, Y., Yao, S., Huang, J., & Mei, L. (2018). Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and γ-aminobutyric acid production. Microbial Cell Factories, 17,180. https://doi.org/10.1186/s12934-018-1029-1

Menconi, A., Kallapura, G., Latorre, J. D., Morgan, M. J., Pumford, N. R., Hargis, B. M., & Tellez, G. (2014). Identification and characterization of lactic acid bacteria in a commercial probiotic culture. Bioscience of Microbiota, Food and Health, 33, 25–30. https://doi.org/10.12938/bmfh.33.25

Mohd Adnan, A. F., & Tan, I. K. (2007). Isolation of lactic acid bacteria from Malaysian foods and assessment of the isolates for industrial potential. Bioresource Technology, 98, 1380-1385. https://doi.org/10.1016/j.biortech.2006.05.034

Muruzović, M., Mladenović, K., Žugić Petrović, T., & Čomić, L. (2018a). Characterization of lactic acid bacteria isolated from traditionally made Serbian cheese and evaluation of their antagonistic potential against Enterobacteriaceae. Journal of Food Processing and Preservation, 42, e13577, 1-9. https://doi.org/10.1111/jfpp.13577

Muruzović, M., Mladenović, K., & Čomić, L. (2018b). In vitro evaluation of resistance to environmental stress by planktonic and biofilm form of lactic acid bacteria isolated from traditionally made cheese from Serbia. Food Bioscience, 23, 54-59. https://doi.org/10.1016/j.fbio.2018.03.005

Muruzović, M., Mladenović, K., Đilas, M., Stefanović, O., & Čomić, L. (2018c). In vitro evaluation of antimicrobial potential and ability of biofilm formation of autochthonous Lactobacillus spp. and Lactococcus spp. isolated from traditionally made cheese from Southeastern Serbia. Journal of Food Processing and Preservation, 42(11), e13776, 1-10. https://doi.org/10.1111/jfpp.13776

Nami, Y., Abdullah, N., Haghshenas, B., Radiah, D., Rosli, R., & Khosroushahi, A. Y. (2014). Probiotic assessment of Enterococcus durans 6HL and Lactococcus lactis 2HL isolated from vaginal microflora. Journal of Medical Microbiology, 63, 1044-1051. https://doi.org/10.1099/jmm.0.074161-0

Rao, M. S., Pintado, J., Stevens, W. F., & Guyot, J. P. (2004). Kinetic growth parameters of different amylolytic and non-amylolytic Lactobacillus strains under various salt and pH conditions. Bioresource Technology, 94, 331–337. https://doi.org/10.1016/j.biortech.2003.11.028

Santos, R. O., Silva, M. V. F., Nascimento, K. O., Batista, A. L. D., Moraes, J., Andrade, M. M., Andrade, L. G. Z. S., Khosravi-Darani, K., Freitas, M. Q., Raices, R. S. L., Silva, M. C., Barbosa Junior, J. L., Barbosa, M. I. M. J., & Cruz, A. G. (2018). Prebiotic flours in dairy food processing: Technological and sensory implications. International Journal of Dairy Technology, 70, 1-10. https://doi.org/10.1111/1471-0307.12394

Silva, H. L. A., Balthazar, C. F., Esmerino, E. A., Vieira, A. H., Cappato, L. P., Neto, R. P. C., Verruck, S., Cavalcanti, R. N., Portela, J. B., Andrade, M. M., Moraes, J., Franco, R. M., Tavares, M. I. B., Prudencio, E. S., Freitas, M. Q., Nascimento, J. S., Silva, M. C., Raices, R. S. L., & Cruz, A. (2017). Effect of sodium reduction and flavor enhancer addition on probiotic Prato cheese processing. Food Research International, 99, 247-255. https://doi.org/10.1016/j.foodres.2017.05.018

Soliman, A. H. S., Sharoba, A. M., Bahlol, H. E. M., Soliman, A. S., & Radi, O. M. M. (2015). Evalu-ation of Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum for probiotic characteristics. Middle East Journal of Applied Science, 5, 10-18.

Thayer, D. W., Muller, W. S., Buchanan, R. L., & Phillips, J. G. (1987). Effect of NaCl, pH, temperature and atmosphere on growth of Salmonella typhimurium in glucose-mineral salts medium. Applied and Environmental Microbiology, 53, 1311–1315. https://doi.org/10.1128/AEM.53.6.1311-1315.1987

Uroić, K., Nikolić, M., Koslć, B., Pavunc, L., Beganović, J., Lukić, J., Jovčić, B., Filipić, B., Miljković, M., Golić, N., Topisirović, L., Čadež, N., Raspor, P., & Šušković, J. (2014). Probiotic properties of lactic acid bacteria isolated from Croatian fresh soft cheese and Serbian white pickled cheese. Food Technology and Biotechnology, 52, 232–241.

Van Den Berghe, E., De Winter, T., & De Vuyst, L. (2006). Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. International Journal of Food Microbiology, 107, 159–170. https://doi.org/10.1016/j.ijfoodmicro.2005.08.027

Van Mastrigt, O., Gallegos Tejeda, D., Kristensen, M. N., Abee, T., & Smid, E. J. (2018). Aroma formation during cheese ripening is best resembled by Lactococcus lactis retentostat cultures. Microbial Cell Factories, 17, 104. https://doi.org/10.1186/s12934-018-0950-7

Velly, H., Fonseca, F., Passot, S., Delacroix-Buchet, A., & Bouix, M. (2014). Cell growth and resistance of Lactococcus lactis subsp. lactis TOMSC161 following freezing, drying and freeze-dried storage are differentially affected by fermentation conditions. Journal of Applied Microbiology, 117, 729-740. https://doi.org/10.1111/jam.12577

Wang, P., Wu, Z., Wu, J., Pan, D., Zen, X., & Cheng. (2016). Effects of salt stress on carbohydrate metabolism of Lactobacillus plantarum ATCC 14917. Current Microbiology, 73, 491-497. https://doi.org/10.1007/s00284-016-1087-8

Wu, Q., Tun, H. M., Law, Y. S., Khafipour, E., & Shah, N. P. (2017). Common distribution of gad operon in Lactobacillus brevis and its GadA contributes to efficient GABA synthesis toward cytosolic near-neutral pH. Frontiers in Microbiology, 8, 206. https://doi.org/10.3389/fmicb.2017.00206

Xia, Y., Liu, X., Wang, G., Zhang, H., Xionga, Z., Sun, Y., & Ai, L. (2017). Characterization and selection of Lactobacillus brevis starter for nitrite degra-dation of Chinese pickle. Food Control, 78, 126-131. https://doi.org/10.1016/j.foodcont.2017.02.046

Yerlikaya, O. (2019). Probiotic potential and biochemical and technological properties of Lactococcus lactis ssp. lactis strains isolated from raw milk and kefir grains. Journal of Dairy Science, 102, 124-134. https://doi.org/10.3168/jds.2018-14983

Yerlikaya, O., & Akbulut, N. (2019). Potential use of probiotic Enterococcus faecium and Enterococcus durans strains in Izmir Tulum cheese as adjunct culture. Journal of Food Science and Technology Mysore, 56, 2175-2185. https://doi.org/10.1007/s13197-019-03699-5

Yerlikaya, O., & Akbulut, N. (2020). In vitro characterisation of probiotic properties of Enterococcus faecium and Enterococcus durans strains isolated from raw milk and traditional dairy products. Journal of Dairy Technology, 73, 98-107. https://doi.org/10.1111/1471-0307.12645

Zago, M., Fornasari, M. E., Carminati, D., Burns, P., Suàrez, V., Vinderola, G., Reinheimer, J., & Giraffa, G. (2011). Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiology, 28, 1033–1040. https://doi.org/10.1016/j.fm.2011.02.009

Published
2020/11/19
Section
Original research paper