ARSENIC CONTENT AND PHENOLIC COMPOUNDS IN PARSLEY (PETROSELINUM CRISPUM (MILL.) FUSS) AND CELERY (APIUM GRAVEOLENS L.) CULTIVATED IN VOJVODINA REGION, SERBIA

  • Slobodanka Pajević University of Novi Sad Faculty of Sciences, Department of Biology and Ecology
  • Neda Mimica-Dukić University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection
  • Ivana Nemeš University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection
  • Milan Župunski University of Novi Sad Faculty of Sciences, Department of Biology and Ecology
  • Nataša Simin University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection
  • Malcolm Watson University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection
  • Danijela Arsenov University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
Keywords: arsenic, vegetables, antioxidative response, phenolic compounds, PCA analysis

Abstract


Randomly collected samples of parsley and celery from different localities were analyzed to determine their quality based on arsenic concentrations, phenolic constituents and the antioxidant capacity of their edible parts. Arsenic concentrations were found in the range: parsley root (0.16 μg/g d.m.) < celery root (0.19 μg/g d.m.) < parsley leaf (0.35 μg/g d.m.) < celery leaf (0.45 μg/g d.m.). Total phenolic contents in roots were similar in both species and varied significantly depending on the cultivation site: 5.03-9.18 mg eqGA/g DE in parsley and 5.04-8.50 mg eqGA/g DE in celery. Lower total flavonoids content was recorded in celery. Among the phenolic acids, ferulic, chlorogenic and several cinnamic acids dominated. Apigenin and its glucosides dominated among flavonoids. Based on the principal component analysis (PCA) it can be concluded that the As content varied depending on the geographical origin of the samples. Also, phenolic compounds showed a significant contribution on PCA clustering, indicating that the cultivation site has a clear significant impact on the metabolites profile, while As content in plants did not significantly affect phenolic compound profile.

References

Agyare, C., Appiah, Y. D. B., & Apenteng, J. A. (2017) Petroselinum crispum: a review. In V. Kuete (Ed.), Medicinal species and vegetable from Africa (pp. 527–547). Cambridge, UK: Academic Press.

Arsenov, D., Župunski, M., Pajević, S., Nemeš, I., Simin, N., Alnuqaydan, A. M., Watson, M., Aloliqi, A. A., & Mimica-Dukić, N. (2021a). Roots of Apium graveolens and Petroselinum crispum—Insight into phenolic status against toxicity level of trace elements. Plants, 10(9), Article1785. https://doi.org/10.3390/plants10091785

Arsenov, D., Župunski, M., Pajević, S., Borišev, M., Nikolić, N., & Mimica-Dukić N. (2021b). Health assessment of medicinal herbs, celery and parsley related to cadmium soil pollution-potentially toxic elements (PTEs) accumulation, tolerance capacity and antioxidative response. Environmental Geochemistry and Health, 43, 2927–2943. https://doi.org/10.1007/s10653-020-00805-x

Aust, S. D. (1985). Lipid peroxidation. In R. A. Greenwald (Ed.), Handbook of methods for oxygen radical research (pp. 203–207). Boca Raton Florida: CRC Press.

Beara, I. N., Lesjak, M. M., Orčić, D. Z., Simin, N. Đ., Četojević-Simin, D. D., Božin, B. N., & Mimica-Dukić, N. M. (2012). Comparative analysis of phenolic profile, antioxidant, anti-inflammatory and cytotoxic activity of two closely-related Plantain species: Plantago altissima L. and Plantago lanceolata L. LWT Food Science and Technology, 47(1), 64–70. https://doi.org/10.1016/j.lwt.2012.01.001

Bencko, V., & Foong, F. Y. L. (2017). The history of arsenical pesticides and health risks related to the use of Agent Blue. Annals of Agricultural and Environmental Medicine, 24(2), 312–316. https://doi.org/10.26444/aaem/74715

Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2010). Arsenic contamination in rice, wheat, pulses, and vegetables: a study in an arsenic affected area of west Bengal, India. Water Air and Soil Pollution, 213, 3–13. https://doi.org/10.1007/s11270-010-0361-9

Bisset, N. G., & Wichtl, M. (1994). Herbal drugs and phytopharmaceuticals. Stuttgart: Medpharm GmbH Scientific Publishers, CRC Press.

Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.

Cvejić Hogervorst, J., Russo, G., Godos, J., Mimica-Dukić, N., Simin, N., Bjelica, A., & Grosso, G. (2018). Beneficial effects of polyphenols on chronic diseases and ageing. In C. M. Galanakis (Ed.), Polyphenols: properties, recovery and application (pp. 69–103). Oxford, UK: Elsevier, Woodhead Publishing.

Dahal, B. M., Fuerhacker, M., Mentler, A., Karki, K. B., Shrestha, R. R., & Blum, W. E. (2008). Arsenic contamination of soils and agricultural plants through irrigation water in Nepal. Environmental Pollution, 155(1), 157–163. https://doi.org/10.1016/j.envpol.2007.10.024

FAO/WHO. (2015). Codex Alimentarius-General standards for contaminants and toxins in food and feed. CODEX STAN 193-1995.

Farzaei, M. H., Abbasabadi, Z., Rahimi, R., & Farzaei, F. (2013). Parley: a review of ethnopharmacology, phytochemistry and biological activities. Journal of Traditional Chinese Medicine, 33, 815–826.

Finnegan, P. M., & Chen, W. (2012). Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology, 3, Article 182. https://doi.org/10.3389/fphys.2012.00182

Gupta, D. K., Tripathi, R. D., Mishra, S., Srivastava, S., Dwivedi, S., Rai, U. N., Yang, X. E., Huanji, H., & Inouhe, M. (2008). Arsenic accumulation in root and shoot vis-a-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L. Journal of Environmental Biology, 29(3), 281–286.

Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita. M., & Fotopoulos V. (2020). Reactive oxygen species and antioxidant defence in plants under abiotic stress: revisiting the crucial role of a universal defence regulator. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681

Jain, A., Yadav, A., Bozhkov, A. I., Padalko, V. I., & Flora, S. J. S. (2011). Therapeutic efficacy of silymarin and naringenin in reducing arsenic-induced hepatic damage in young rats. Ecotoxicology and Environmental Safety, 74(4), 607–614. https://doi.org/10.1016/j.ecoenv.2010.08.002

Kapaj, S., Peterson, H., Liber, K., & Bhattacharya, P. (2006). Human health effects from chronic arsenic poisoning – a review. Journal of Environmental Science and Health, Part A, 41(10), 2399–23428. https://doi.org/10.1080/10934520600873571

Kostecka-Gugała, A., & Latowski, D. (2018). Arsenic-induced oxidative stress in plants. In M. Hasanuzzaman, K. Nahar, & M. Fujita (Eds.), Mechanisms of arsenic toxicity and tolerance in plants (pp. 79–104). Singapore: Springer.

Liu, W. J., Wood, B. A., Raab, A., McGrath, S. P., Zhao, F. J., & Feldmann, J. (2010).  Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots. Plant Physiology, 152, 2211–2221. https://doi.org/10.1104/pp.109.150862

McBride, M. B., Shayler, H. A., Russell-Anelli, J. M., Spliethoff, H. M., & Marquez-Bravo, L. G. (2015). Arsenic and lead uptake by vegetable crops grown on an old orchard site amended with compost. Water Air and Soil Pollution, 226(8), Article 265. https://doi.org/10.1007/s11270-015-2529-9

McBride, M. B., & Spiers, G. (2001). Trace element content of selected fertilizers and dairy manures as determined by ICP-MS. Communications in Soil Science and Plant Analysis, 32, 139–156. https://doi.org/10.1081/CSS-100102999

Mencherini, T., Cau, A., Bianco, G., Della Loggia, R., Aquino, R. P., & Autore, G. (2007). An extract of Apium graveolens var. dulce leaves: structure of the major constituent, apiin, and its anti-inflammatory properties. Journal of Pharmacy and Pharmacology, 59, 891–897.

Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4), 523–530.

Mimica-Dukić, N., & Popović, M. (2007). Apiaceae species: a promising source of pharmacologically active compounds I: Petrosellinum crispum, Apium greveolens and Pastinaca sativa. In J. N.  Govil, V. K. Singh (Eds.), Recent Progress in Medicinal Plants - Phytopharmacology and Therapeutic Values III (pp. 132–133). Houston: Studim Press LLC.

Mišan, A. (2011). Antioxidant properties of food supplemented with medicinal plants. Food and Feed Research, 37(2), 81–85.

Mollah, M. Y. A., Lu, F., & Cocke, D. L. (1998). An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) characterization of the speciation of arsenic(V) in Portland cement type-V. Science of the Total Environment, 224, 57–68. https://doi.org/10.1016/S0048-9697(98)00318-0

Nikolić, N., Cvetković, D., & Todorović, Z. (2011). A characterization of content, composition and antioxidant capacity of phenolic compounds in celery roots. Italian Journal of Food Science 23(2), 214–219.

Nikolić, N., Borišev, M., Pajević, S., Arsenov, D., & Župunski, M. (2014). Comparative assessment of mineral elements and heavy metals accumulation in vegetable species. Food & Feed Research, 41(2), 115–124.

Odobasic, A., Sestan, I., & Bratovcic, A. (2017). Extraction of heavy metals from vegetable samples. ingredients. In A. M. Grumezescu, & A. M. Holban AM (Eds.), Ingredients extraction by physicochemical methods in food (pp. 253–273). Cambridge, UK: Academic Press.

Pajević, S., Arsenov, D., Nikolic, N., Borisev, M., Orcic, D., Zupunski, M., & Mimica-Dukic, N. (2018). Heavy metal accumulation in vegetable species and health risk assessment in Serbia. Environmental Monitoring and Assessment, 190(8), Article 459. https://doi.org/10.1007/s10661-018-6743-y

Pan, X. D., Wu, P. G., & Jiang, X. G. (2016). Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Scientific Reports, 6, Article 20317. https://doi.org/10.1038/srep20317

Peng, L., Jia, J., Daihui, Z., Jingli, X., Xueshu, X., & Dongzhi, W. (2004). In vitro and in vivo antioxidant activities of a flavonoid isolated from celery (Apium graveolens L. var. dulce). Food & Function Journal, 5, 50–56.

Perez-Gutierre, R., Muniz-Ramirez, A., Campoy, A. H. G., Flores, J. M. M., & Flores, S. O. (2018). Polyphenols of leaves of Apium graveolens inhibit in vitro protein glyction and protect RINm5F cells against methylglyoxal-induced cytotoxicity. The Functional Foods in Health and Disease, 8(3), 193–211. https://doi.org/10.31989/ffhd.v8i3.399

Popova, M., Stoyanova, A., Valyovska-Popova, N., Bankova,V., & Peev, D. (2014). A new coumarin and total phenolic and flavonoids content of Bulgarian celeriac. Bulgarian Chemical Communications, 64(A), 88–93.

Popović, M., Kaurinović, B., Jakovljević, V., Mimica-Dukić, N., & Bursać, M. (2007). Effect of parsley extract on some biochemical parameters of oxidative stress in mice treated with Cl4. Phytotherapy Research, 21(8), 717–723. https://doi.org/10.1002/ptr.2134

Pyne, S., & Santra, S. C. (2017). Accumulation of arsenic, copper and iron in common medicinal plants of Murshidabad district, West Bengal, India. Journal of Experimental & Clinical Cancer Research, 9, 54–62.

R Development Core Team R (2016). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Rusin, M., Domagalska, J., Rogala, D., Razzaghi, M., & Szymala, I. (2021). Concentration of cadmium and lead in vegetables and fruits. Scientific Reports, 11, Article 11913. https://doi.org/10.1038/s41598-021-91554-z

Savić, R., Ondrasek, G., & Josimov-Dundjerski, J. (2015). Heavy metals in agricultural landscapes as hazards to human and ecosystem health: a case study on zinc and cadmium in drainage channel sediments. Journal of the Science of Food and Agriculture, 95, 466–470. https://doi.org/10.1002/jsfa.6515

Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999).  Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

Soler-Rivas, C., Espín, J. C., & Wichers, H. J. (2000). An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochemical Analysis, 11, 330–338. https://doi.org/10.1002/1099-1565(200009/10)11:5<330::AID-PCA534>3.0.CO;2-G

Stankevićius, M., Akunaca, I., Jacobsone, I., & Maruška, A. (2011). Comparative analysis of radical scavenging and antioxidant activity of phenolic compounds present in everyday use spice plants by means of spectrophotometric and chromatographic methods. Journal of Separation Science, 34, 1261–1267. https://doi.org/10.1002/jssc.201000915

Strategija vodosnabdevanja i zaštite voda u AP Vojvodini. Univerzitet u Novom Sadu, Prirodno-matematički fakultet, Departman za hemiju. (2009). http://www.ekourbapv.vojvodina.gov.rs/wp-content/uploads/2018/09/sajt-strategija-vodosnabdevanja-i-zastite-voda-apv.pdf

Ulusu, Y., Ozturk, L., & Elmastas, M. (2017). Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to cadmium stress. Russian Journal of Plant Physiology, 64(6), 883–888. https://doi.org/10.1134/S1021443717060139

U.S. EPA. (2014). Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry, Revision 2. Washington, DC.

Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation, ISRN Ecology, e402647. https://doi.org/10.5402/2011/402647.

Published
2021/12/15
Section
Original research paper