CURRENT CIRCULAR ECONOMY ASPECT IN VALORIZATION OF AGRO-INDUSTRIAL WASTE AS VALUE-ADDED PRODUCTS

  • Tatjana Đorđević University of Novi Sad, Faculty of technology
  • Jelena Vujetić
  • Diandra Pintać-Šarac
Keywords: circular bioeconomy, agro-industrial waste, lignocellulose, high-value products

Abstract


Agro-industrial waste has been considered to be a good source for the production of biofuels. Apart from that, it has also proven to be a valuable source of high-value-added products. The conversion of agro-industrial waste into high-value-added products allows the whole process to be designed in line with the biorefinery and zero-waste circular economy concept, especially because all parts of agro-industrial waste can be utilised. The application of the circular economy to agro-industrial systems is spreading globally and is a response to the current unsustainable model of production and consumption based on resource depletion and increased demand. This review provides a more detailed understanding of the potential of the circular economy as a response to the need to reduce the environmental impact of agro-industrial waste in organic production and to promote a more sustainable agri-food industry.

 

References

Alemdar, A., & Sain, M. (2008). Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls. Bioresource Technology, 99(6), 1664-1671. https://doi.org/10.1016/j.biortech.2007.04.029

Alzuwaid, N. T., Sissons, M., Laddomada, B., & Fellows, C. M. (2019). Nutritional and functional properties of durum wheat bran protein concentrate. Cereal Chemistry, 97(20), 304-315. https://doi.org/10.1002/cche.10246

Anwar, Z., Gulfraz, M., & Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. Journal of Radiation Research and Applied Sciences, 7(2), 163-173. https://doi.org/10.1016/j.jrras.2014.02.003

Arya, S. S., Rookes, J. E., Cahill, D. M., & Lenka, S. K. (2021). Vanillin: A review on the therapeutic prospects of a popular flavouring molecule. Advances in Traditional Medicine, 21, 1-17. https://doi.org/10.1007/s13596-020-00531-w

Blasi, A., Verardi, A., Lopresto, C. G., Siciliano, S., & Sangiorgio, P. (2023). Lignocellulosic agricultural waste valorization to obtain valuable products: An overview. Recycling, 8(4), 61. https://doi.org/10.3390/recycling8040061

Božić, D., Gorgievski, M., Stanković, V., Cakić, M., Dimitrijević, S., & Conić, V. (2021). Biosorption of lead ions from aqueous solutions by beech sawdust and wheat straw. Chemical Industry & Chemical Engineering Quarterly, 27(1), 21-34. https://doi.org/10.2298/CICEQ191113021B

Călinoiu, L. F., & Vodnar, D. C. (2019). Thermal processing for the release of phenolic compounds from wheat and oat bran. Biomolecules, 10(1), 21. https://doi.org/10.3390/biom10010021

Cheetangdee, N., & Benjakul, S. (2015). Antioxidant activities of rice bran protein hydrolysates in bulk oil and oil‐in‐water emulsion. Journal of the Science of Food and Agriculture, 95(7), 1461-1468. https://doi.org/10.1002/jsfa.6842

Chen, H., Liu, Y., Yang, T., Chen, D., Xiao, Y., Qin, W., Wu, D., Zhang, Q., Lin, D., Liu, Y., Liu, A., & Huang, Z. (2021). Interactive effects of molecular weight and degree of substitution on biological activities of arabinoxylan and its hydrolysates from triticale bran. International Journal of Biological Macromolecules, 166, 1409-1418. https://doi.org/10.1016/j.ijbiomac.2020.11.020

Chen, Z., Chen, L., Khoo, K. S., Gupta, V. K., Sharma, M., Show, P. L., & Yap, P. S. (2023). Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views. Biotechnology Advances, 108265. https://doi.org/10.1016/j.biotechadv.2023.108265

Dong, X., Dong, M., Lu, Y., Turley, A., Jin, T., & Wu, C. (2011). Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Industrial Crops and Products, 34(3), 1629-1634. https://doi.org/10.1016/j.indcrop.2011.06.002

Egüés, I., Sanchez, C., Mondragon, I., & Labidi, J. (2012). Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresource Technology, 103(1), 239-248. https://doi.org/10.1016/j.biortech.2011.09.139

Fărcaș, A. C., Socaci, S. A., Nemeș, S. A., Pop, O. L., Coldea, T. E., Fogarasi, M., & Biriș-Dorhoi, E. S. (2022). An update regarding the bioactive compound of cereal by-products: Health benefits and potential applications. Nutrients, 14(17), 3470. https://doi.org/10.3390/nu14173470

Fărcaș, A., Drețcanu, G., Pop, T. D., Enaru, B., Socaci, S., & Diaconeasa, Z. (2021). Cereal processing by-products as rich sources of phenolic compounds and their potential bioactivities. Nutrients, 13(11), 3934. https://doi.org/10.3390/nu13113934

Gençdağ, E., Görgüç, A., & Yılmaz, F. M. (2020). Recent advances in the recovery techniques of plant-based proteins from agro-industrial by-products. Food Reviews International, 37(4), 447-468. https://doi.org/10.1080/87559129.2019.1709203

Guerrini, A., Burlini, I., Lorenzo, B. H., Grandini, A., Vertuani, S., Tacchini, M., & Sacchetti, G. (2020). Antioxidant and antimicrobial extracts obtained from agricultural by-products: Strategies for a sustainable recovery and future perspectives. Food & Bioproducts Processing, 124, 397-407. https://doi.org/10.1016/j.fbp.2020.10.003

Hallac, B. B., & Ragauskas, A. J. (2011). Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 5(2), 215-225. https://doi.org/10.1002/bbb.269

Hosseinian, F. S., & Mazza, G. (2009). Triticale bran and straw: Potential new sources of phenolic acids, proanthocyanidins, and lignans. Journal of Functional Foods, 1(1), 57-64. https://doi.org/10.1016/j.jff.2008.09.009

Houfani, A. A., Anders, N., Spiess, A. C., Baldrian, P., & Benallaoua, S. (2020). Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars – a review. Biomass and Bioenergy, 134, 105481. https://doi.org/10.1016/j.biombioe.2020.105481

Ilić, N., Davidović, S., Milić, M., Rajilić-Stojanović, M., Pecarski, D., Ivančić-Šantek, M., Mihajlovski, K., & Dimitrijević-Branković, S. (2022). Valorization of lignocellulosic wastes for extracellular enzyme production by novel Basidiomycetes: Screening, hydrolysis, and bioethanol production. Biomass Conversion and Biorefinery, 13, 17175-17186. https://doi.org/10.1007/s13399-021-02145-x

Li, S., Liu, M., Chen, Z., Huang, X., Chen, H., Zeng, Z., & Li, C. (2021). Cross-linking treatment of arabinoxylan improves its antioxidant and hypoglycemic activities after simulated in vitro digestion. LWT, 145, 111386. https://doi.org/10.1016/j.lwt.2021.111386

Liu, Y. J., Li, B., Feng, Y., & Cui, Q. (2020). Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnology Advances, 40, 107535. https://doi.org/10.1016/j.biotechadv.2020.107535

Maki-Arvela, P., Salmi, T., Holmbom, B., Willfor, S., & Murzin, D. Y. (2011). Synthesis of sugars by hydrolysis of hemicelluloses-a review. Chemical Reviews, 111(9), 5638-5666. https://doi.org/10.1021/cr2000042

Martinov, M., Đatkov, Đ., Golub, M., Viskovic, M., Bojic, S., & Krstic, J. (2015). Plant for lignocellulosic bioethanol production in Serbia (Final report #???). Izdavač???, Novi Sad, Serbia. URL???

Mihajlovski, K., Pecarski, D., Rajilić-Stojanović, M., & Dimitrijević-Branković, S. (2021). Valorization of corn stover and molasses for enzyme synthesis, lignocellulosic hydrolysis and bioethanol production by Hymenobacter sp. CKS3. Environmental Technology & Innovation, 23, 101627. https://doi.org/10.1016/j.eti.2021.101627

Mitrović, S., Radosavljević, I., & Veselinov, M. (2017). Cirkularna ekonomija kao šansa za razvoj Srbije. Organization for Security and Co-operation in Europe. Retrieved from https://www.osce.org/sr/serbia/292311

Mladenović, D., Grbić, J., Đukić-Vuković, A., & Mojović, L. (2022). Improvement of enzymatic saccharification of corn cob by microwave-assisted peroxide treatment. In 9th International Conference on Sustainable Solid Waste Management. National Technical University of Athens, Greece.

Nesterovic, A., Djatkov, D., Viskovic, M., & Martinov, M. (2023). Sustainable crop residues potential for the production of lignocellulosic bioethanol in Serbia. (nepotpuna referenca)

Neto, W. P. F., Silvério, H. A., Dantas, N. O., & Pasquini, D. (2013). Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls. Industrial Crops and Products, 42, 480-488. https://doi.org/10.1016/j.indcrop.2012.06.041

Pattanaik, L., Pattnaik, F., Saxena, D. K., & Naik, S. N. (2019). Biofuels from agricultural wastes. In A. Basile & F. Dalena (Eds.), Second and third generation of feedstocks (pp. 103-142). Elsevier Inc. https://doi.org/10.1016/B978-0-12-815162-4.00005-7

Peng, F., & Sun, R. C. (2010). Modification of cereal straws as natural sorbents for removing metal ions from industrial waste water. In Run-Cang Sun (Ed.), Cereal straw as a resource for sustainable biomaterials and biofuels (pp. 219-237). https://doi.org/10.1016/B978-0-444-53234-3.00008-0

Petravić Tominac, V., Trontel, A., Novak, M., Marđetko, N., Grubišić, M., Didak Ljubas, B., Buljubašić, M., & Šantek, B. (2022). Lignocelulozni nusprodukti iz poljoprivrede i prehrambene industrije kao pokretač napretka biotehnološke proizvodnje. Glasnik zaštite bilja, 45(6), 26-37. https://doi.org/10.31727/gzb.45.6.3

Phongthai, S., Lim, S.-T., & Rawdkuen, S. (2016). Optimization of microwave-assisted extraction of rice bran proteinand its hydrolysates properties. Journal of Cereal Science, 70, 146-154. https://doi.org/10.1016/j.jcs.2016.06.001

Radenković, M., Momčilović, M., Petrović, J., Mraković, A., Relić, D., Popović, A., & Živković, S. (2022). Removal of heavy metals from aqueous media by sunflower husk: A comparative study of biosorption efficiency by using ICP-OES and LIBS. Journal of the Serbian Chemical Society, 87(7-8), 939-952. https://doi.org/10.2298/JSC220105022R

RAS. (2020). Serbia: Place where the agriculture is the culture. Retreived from https://ras.gov.rs/en/sector/agri-food-industry

Republički zavod za statistiku. (2023). Statistički godišnjak Republike Srbije 2023 (Statistical Yearbok 2023). Retrieved from https://www.stat.gov.rs/sr-latn/publikacije/publication/?p=15431

Ristović, M., Stojanović, S., Šokarda Slavić, M., Margetić, A., Božić, N., Vujčić, Z., & Dojnov, B. (2023). Corn cob agro-waste as valuable material for XOS production by fungal enzymes. In Programme and abstract book-Biotechnology for a circular bioeconomy: carbon capture, waste recycling and mitigation of global warming, 28-29 March 2023, online, (pp. 67-67). European Federation of Biotechnology, Barcelona, Spain.

Rosenfeld, C., Konnerth, J., Sailer‐Kronlachner, W., Solt, P., Rosenau, T., & van Herwijnen, H. W. (2020). Current situation of the challenging scale‐up development of hydroxymethylfurfural production. ChemSusChem, 13(14), 3544-3564. https://doi.org/10.1002/cssc.202000581

Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 5(1), 1-15. https://doi.org/10.1186/s40643-017-0187-z

Svärd, A., Brännvall, E., & Edlund, U. (2015). Rapeseed straw as a renewable source of hemicelluloses: Extraction, characterization and film formation. Carbohydrate Polymers, 133, 179-186. https://doi.org/10.1016/j.carbpol.2015.07.023

Terrett, O. M., & Dupree, P. (2019). Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Current Opinion in Biotechnology, 56, 97-104. https://doi.org/10.1016/j.copbio.2018.10.010

UN Economic Commission for Europe. (2022). Accelerating circular economy in Serbia: UNECE supports action on agriculture and food loss and waste. Retrieved from https://unece.org/circular-economy/news/accelerating-circular-economy-serbia-unece-supports-action-agriculture-and

Yilmaz-Turan, S., Jiménez-Quero, A., Moriana, R., Arte, E., Katina, K., & Vilaplana, F. (2020). Cascade extraction of proteins and feruloylated arabinoxylans from wheat bran. Food Chemistry, 333, 127491. https://doi.org/10.1016/j.foodchem.2020.127491

Yoo, C. G., Meng, X., Pu, Y., & Ragauskas, A. J. (2020). The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresource Technology, 301, 122784. https://doi.org/10.1016/j.biortech.2020.122784

Published
2024/05/24
Section
Review article