EFFECTS OF SPONTANEOUS AND INOCULATED FERMENTATION ON THE TOTAL PHENOLIC CONTENT AND ANTIOXIDANT ACTIVITY OF CABERNET SAUVIGNON WINES AND FERMENTED POMACE
Abstract
The total phenolic content and antioxidant activity of wine and fermented pomace (FP) from Cabernet Sauvignon grapes harvested at the stage of full ripeness were evaluated by spectrophotometric analysis. Wine and pomace were obtained after prolonged maceration during spontaneous and inoculated fermentation of fully ripe grapes. Three individual vinifications were inoculated with the following commercial yeasts: BDX (Lallemand, Montréal, QC, Canada), FX10 (Laffort, Bordeaux, France) and Qa23 (Lallemand, Montréal, QC, Canada). For each vinification, maceration lasted 0, 3, 5, 7, 14 and 21 days, respectively. The total phenolic content was deter-mined spectrophotometrically using the Folin-Ciocalteu method. Two different methods were used to evaluate the antioxidant activity of the wine and pomace samples: the Ferric Reducing Activity of Plasma (FRAP) and the Trolox Equivalent Antioxidant Capacity (TEAC). The use of a winemaking process that included different maceration times and inoculation with yeasts, as well as spontaneous fermentation, significantly modulated the total phenolic content of the obtained wines and FP. This study could provide a good basis for the practical application and obtaining wines with a high content of phenolic compounds and antioxidant properties.
References
Bautista-Ortín, A.B., Busse-Valverde, N., Fernández-Fernández, J.I., Gómez-Plaza, E., & Gil-Muñoz, R. (2016). The extraction kinetics of anthocyanins and proanthocyanidins from grape to wine in three different varieties. Journal International des Sciences de la Vigne et du Vin, 50(2), 91-100. https://doi.org/10.20870/oeno-one.2016.50.2.781
Benzie, I.F.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
Bindon, K. A., Madani, S. H., Pendleton, P., Smith, P. A., & Kennedy, J. A. (2014). Factors affecting skin tannin extractability in ripening grapes. Journal of Agricultural and Food Chemistry, 62(5), 1130-1141. https://doi.org/10.1021/jf4050606
Brandolini, V., Fiore, C., Maietti, A., Tedeschi, P., & Romano, P. (2007). Influence of Saccharomyces cerevisiae strains on wine total antioxidant capacity evaluated by photochemiluminescence. World Journal of Microbiology and Biotechnology 23(4), 581-586. https://doi.org/10.1007/s13213-010-0139-8
Budić-Leto, I., Garcin, L., Lovrić, T., & Vrhovsek, U. (2008). Effects of maceration conditions on the polyphenolic composition of red wine 'Plavac mali'. Vitis, 47(4), 245–250. https://doi.org/10.5073/vitis.2008.47.245-250
Caridi, A., Cufari, A., Lovino, R., Palumbo, R., & Tedesco, I. (2004). Influence of yeast on polyphenol composition of wine. Food Technology and Biotechnology, 42(1), 37-40.
Damijanić, K., Staver, M., Kovačević Ganić, K., Bubola, M., & Palman, I. (2012). Effects of maceration duration on the phenolic composition and antioxidant capacity of “Teran” (Vitis vinifera L.) wine. Agriculturae Conspectus Scientificus, 77(2), 103-107.
de la Cerda‐Carrasco, A., López‐Solís, R., Nuñez‐Kalasic, H., Peña‐Neira, Á., & Obreque‐Slier, E. (2015). Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). Journal of the Science of Food and Agriculture, 95(7), 1521-1527. https://doi.org/10.1002/jsfa.6856
Fernández-Pachón, M.S., Villaño, D., García-Parrilla, M.C., & Troncoso, A.M. (2004). Antioxidant activity of wines and relation with their polyphenolic composition. Analytica Chimica Acta, 513(1), 113–118. http://dx.doi.org/10.1016/j.aca.2004.02.028
Francesca, N., Romano, R., Sannino, C., Le Grottaglie, L., Settanni, L., & Moschetti, G. (2014). Evolution of microbiological and chemical parameters during red wine making with extended post-fermentation maceration. International Journal of Food Microbiology, 171, 84–93. https://doi.org/10.1016/j.ijfoodmicro.2013.11.008
Gao, Y., Zietsman, A.J., Vivier, M.A., & Moore, J.P. (2019). Deconstructing wine grape cell walls with enzymes during winemaking: New insights from glycan microarray technology. Molecules, 24(1), 165. http://dx.doi.org/10.3390/molecules24010165
Huang, D., Ou, B., & Prior, R.L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856. https://doi.org/10.1021/jf030723c
Ivanova, V., Vojnoski, B., & Stefova, M. (2012). Effect of winemaking treatment and wine aging on phenolic content in Vranec wines. Journal of Food Science and Technology, 49(2), 161–172. http://dx.doi.org/10.1007/s13197-011-0279-2
Ivanova-Petropulos, V., Ricci, A., Nedelkovski, D., Dimovska, V., Parpinello, G.P., & Versari, A. (2015). Targeted analysis of bioactive phenolic compounds and antioxidant activity of Macedonian red wines. Food Chemistry, 171, 412–420. http://dx.doi.org/10.1016/j.foodchem.2014.09.014
Jara-Palacios, M.J., Hernanz, D., Escudero-Gilete, M.L., & Heredia, F.J. (2014). Antioxidant potential of white grape pomaces: Phenolic composition and antioxidant capacity measured by spectrophotometric and cyclic voltammetry methods. Food Research International, 66, 150-157. https://doi.org/10.1016/j.foodres.2014.09.009
Jordão, A.M., Correia, A.C., & Gonçalves, F.J. (2012). Evolution of antioxidant capacity in seeds and skins during grape maturation and their association with proanthocyanidin and anthocyanin content. Vitis, 51, 137–139. https://doi.org/10.5073/vitis.2012.51.137-139
Kocabey, N., Yilmaztekin, M., & Hayaloglu, A.A. (2016). Effect of maceration duration on physicochemical characteristics, organic acid, phenolic compounds and antioxidant activity of red wine from Vitis vinifera L. Karaoglan. Journal of Food Science and Technology, 53(9), 3557–3565. http://dx.doi.org/10.1007/s13197-016-2335-4
Ky, I., Lorrain, B., Kolbas, N., Crozier, A., & Teissedre, P.L. (2014). Wine by-products: Phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different French grape varieties. Molecules, 19(1), 482-506. https://doi.org/10.3390/molecules19010482
Lisov, N., Petrovic, A., Čakar, U., Jadranin, M., Tešević, V., & Bukarica-Gojković, L. (2020). Extraction kinetic of some phenolic compounds during Cabernet Sauvignon alcoholic fermentation and antioxidant properties of derived wines. Macedonian Journal of Chemistry and Chemical Engineering, 39(2), 185-196. https://doi.org/10.20450/mjcce.2020.2060
Liu, X., Le Bourvellec, C., & Renard, C. M. (2020). Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3574-3617. https://doi.org/10.1111/1541-4337.12632
Melo, P.S., Massarioli, A.P., Denny, C., dos Santos, L.F., Franchin, M., Pereira, G.E., Ferreira de Souza Vieira, T.M., Rosalen, P.L., & de Alencar, S.M. (2015). Winery by-products: extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species. Food Chemistry, 181, 160-169. http://dx.doi.org/10.1016/j.foodchem.2015.02.087
Morata, A., Gómez-Cordovés, M.C., Suberviola, J., Bartolomé, B., Colomo, B., & Suárez, J.A. (2003). Adsorption of anthocyanins by yeast cell walls during the fermentation of red wines. Journal of Agricultural and Food Chemistry 51(14), 4084-4088. http://dx.doi.org/10.1021/jf021134u
Muñoz-Bernal, Ó.A., Coria-Oliveros, A.J., Vazquez-Flores, A.A., de la Rosa, L.A., Núñez-Gastélum, J.A., Rodrigo-García, J., Ayala-Zavala, J.F., & Alvarez-Parrilla, E. (2020). Evolution of phenolic content, antioxidant capacity and phenolic profile during cold pre-fermentative maceration and subsequent fermentation of Cabernet Sauvignon red wine. South African Journal of Enology and Viticulture, 41(1), 72-82. http://dx.doi.org/10.21548/41-1-3778
Plavša, T., Jurinjak, N., Antunović, D., Peršurić, Đ., & Kovačević Ganić, K. (2012). The influence of skin maceration time on the phenolic composition and antioxidant activity of red wine Teran (Vitis vinifera L.). Food Technology and Biotechnology, 50(2), 152–158.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Ribéreau-Gayon, P., Glories, Y., Maujean, A., Dubourdieu, D. (2006). Handbook of Enology: The chemistry of wine stabilization and treatments. (Vol. 2, 2nd ed.). Chichester, England: Jonh Wiley & Sons.
Rockenbach, I.I., Gonzaga, L.V., Rizelio, V.M., Gonçalves, A.E.D.S.S., Genovese, M.I., & Fett, R. (2011). Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Research Internation, 44, 897–901. http://dx.doi.org/10.1016/j.foodchem.2010.12.137
Samoticha, J., Wojdyło, A., Chmielewska, J., & Nofer, J. (2019). Effect of different yeast strains and temperature of fermentation on basic enological parameters, polyphenols and volatile compounds of Aurore white wine. Foods, 8(12), 599. https://doi.org/10.3390/foods8120599
Setford, P.C., Jeffery, D.W., Grbin, P.R., & Muhlack, R.A. (2017). Factors affecting extraction and evolution of phenolic compounds during red wine maceration and the role of process modelling. Trends in Food Science & Technology, 69, 106-117. http://dx.doi.org/10.1016/j.tifs.2017.09.005
Sun, B., Neves, A.C., Fernandes, T.A., Fernandes, A.L., Mateus, N., De Freitas, V., Leandro, C., & Spranger, M.I. (2011). Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity. Journal of Agricultural and Food Chemistry, 59(12), 6550–6557. http://dx.doi.org/10.1021/jf201383e
Tanner, H., & Brunner, H.R. (1979). Gentranke-Analytik. Deutschland: Verlag Heller-Chemie und Verwaltunsgesellschaft GmbH.
Zhou, M., Bu, T., Zheng, J., Liu, L., Yu, S., Li, S., & Wu, J. (2021). Peptides in brewed wines: Formation, structure, and function. Journal of Agricultural and Food Chemistry, 69(9), 2647-2657. http://dx.doi.org/10.1021/acs.jafc.1c00452