THERAPEUTIC PROPERTIES OF SOME SPECIFIC HONEY TYPES
Sažetak
This paper examines the physicochemical characteristics, as well as the antioxidant, antibacterial, and antiproliferative effects, of several honey types that are commercially available but not typical of Serbia. The analysis included moisture, pH, electrical conductivity, free acidity, and hydroxymethylfurfural (HMF). All tested honey samples met EU regulatory standards. The antioxidant activity was assessed by measuring total phenolic content (TPC) and scavenging activity on diphenylpicrylhydrazyl radicals (DPPH•). Forest honey exhibited the highest TPC level (30.6 ± 1.63 mg GAE/100 g), while buckwheat honey had the lowest (14.4 ± 0.75 mg GAE/100 g). This was consistent with the scavenging activity on DPPH•, which was the highest in manuka honey and lowest in buckwheat honey. Antibacterial activity was evaluated using agar diffusion tests and minimal inhibitory concentration (MIC) measurements. Manuka honey demonstrated the strongest antibacterial effects against Staphylococcus aureus and S. epidermidis, with a MIC of 6.25% for both strains. Buckwheat honey also showed notable antibacterial activity against these strains. In terms of antiproliferative activity, manuka honey was the most effective among the tested honey types, with IC50 values of 21.9 ± 2.05 mg/mL for cervix cancer cells (HeLa) and 32.5 ± 3.69 mg/mL for MRC-5 cells derived from healthy lung tissue.
Reference
Adams, C. J., Manley-Harris, M., & Molan P. C. (2009). The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydrate Research, 344, 1050–1053. https://doi.org/10.1016/j.carres.2009.03.020053
Afrin, S., Giampieri, F., Gasparrini, M., Forbes-Hernandez, T. Y., Cianciosi, D., Reboredo-Rodriguez, P., Manna, P. P., Zhang, J., Quiles, J. L., & Battino, M. (2018). The inhibitory effect of Manuka honey on human colon cancer HCT-116 and LoVo cell growth. Part 2: Induction of oxidative stress, alteration of mitochondrial respiration and glycolysis, and suppression of metastatic ability. Food and Function, 9, 2158–2170. https://doi.org/10.1039/c8fo00165k
Almasaudi, S. (2021). The antibacterial activities of honey. Saudi Journal of Biological Sciences, 28, 2188–2196. https://doi.org/10.1016/j.sjbs.2020.10.017
Alqarni, A. S., Owayss, A. A., & Mahmoud, A. A. (2016). Physicochemical characteristics, total phenols and pigments of national and international honeys in Saudi Arabia. Arabian Journal of Chemistry, 9, 114–120. https://doi.org/10.1016/j.arabjc.2012.11.013
Alvarez-Suarez, J. M., Gasparrini, M., Forbes-Hernández, T. Y., Mazzoni, L., & Giampieri, F. (2014). The composition and biological activity of honey: A focus on manuka honey. Foods, 3, 420–432. https://doi.org/10.3390/foods3030420
Alvarez-Suarez, J. M., Giampieri, F., & Battino, M. (2013). Honey as a source of dietary antioxidants: Structures, bioavailability and evidence of protective effects against human chronic diseases. Current Medicinal Chemistry, 20, 621–638. https://doi.org/10.2174/092986713804999358
Ariffin, A. A., Ghazali, H. M., & Kavousi, P. (2014). Validation of a HPLC method for determination of hydroxymethylfurfural in crude palm oil. Food Chemistry, 154, 102–107. https://doi.org/10.1016/j.foodchem.2013.12.082
Aryappalli, P., Shabbiri, K., Masad, R. J., Al-Marri, R. H., Haneefa, S. M., Mohamed, Y. A., Arafat, K., Attoub, S., Cabral-Marques, O., Ramadi, K. B., Fernandez-Cabezudo, M. J., & al-Ramadi, B. K. (2019). Inhibition of tyrosine-phosphorylated STAT3 in human breast and lung cancer cells by manuka honey is mediated by selective antagonism of the IL-6 receptor. International Journal of Molecular Sciences, 20, 4340. https://doi.org/10.3390/ijms20184340
Association of Official Analytical Chemists. (2000). Official Methods of Analysis of the AOAC (17th ed.). Gaithersburg, MD, USA: The Association.
Beitlich, N., Koelling-Speer, I., Oelschlaegel, S., & Speer, K. (2014). Differentiation of manuka honey from kanuka honey and from jelly bush honey using HS-SPME-GC/MS and UHPLC-PDA-MS/MS. Journal of Agricultural and Food Chemistry, 62, 6435–6444. https://doi.org/10.1021/jf501818f
Bogdanov, S. (2009). Harmonised methods of the International Honey Commission. Bern, Switzerland: International Honey Commission. http://www.ihc-platform.net/ihcmethods2009.pdf
Cianciosi, D., Forbes-Hernandez, Y. T., Afrin, S., Gasparrini, M., Quiles, J. L., Gil, E., Bompadre, S., Simal-Gandara, J., Battino, M., & Giampieri, F. (2020). The influence of in vitro gastrointestinal digestion on the anticancer activity of manuka honey. Antioxidants, 9, 64. https://doi.org/10.3390/antiox9010064
Cimpoiu, C., Hosu, A., Miclaus, V., & Puscas, A. (2013). Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 100, 149–154. https://doi.org/10.1016/j.saa.2012.04.008
Codex Alimentarius Commission. (2019). Revised Codex Standards for Honey. Codex Standard 12-1981, Italy, Rome.
Das, N., Ray, N. Patil, A. R., Saini, S. S., Waghmode, B., Ghosh, C., Patil, S. B., Patil, S. B., Mote, C. S., Saini, S., Saraswat, B. L., Sircar, D., & Roy, P. (2022). Inhibitory effect of selected Indian honey on colon cancer cell growth by inducing apoptosis and targeting the β-catenin/Wnt pathway. Food and Function, 13, 8283–8303. https://doi.org/10.1039/D1FO03727G
da Silva, P. M., Gauche, C., Gonzaga, L. V., & Costa, A. C. O. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051
Deng, J., Liu, R., Lu, Q., Hao, P., Xu, A., Zhang, J., & Tan, J. (2018). Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chemistry, 252, 243–249. https://doi.org/10.1016/j.foodchem.2018.01.115
Dżugan, M., Grabek-Lejko, D., Swacha, S., Tomczyk, M., Bednarska, S., & Kapusta, I. (2020). Physicochemical quality parameters, antibacterial properties and cellular antioxidant activity of Polish buckwheat honey. Food Bioscience, 34, 100538. https://doi.org/10.1016/j.fbio.2020.100538
El-Senduny, F. F., Hegazi, N. M., Abd Elghani, G. E., & Farag, M. A. (2021). Manuka honey, a unique mono-floral honey. A comprehensive review of its bioactives, metabolism, action mechanisms, and therapeutic merits. Food Bioscience, 42, 101038. https://doi.org/10.1016/j.fbio.2021.101038
Estevinho, L., Pereira, A. P., Moreira, L., Dias, L. G., & Pereira, E. (2008). Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food and Chemical Toxicology, 46, 3774–3779. https://doi.org/10.1016/j.fct.2008.09.062
Fernandez-Cabezudo, M. J., El-Kharrag, R., Torab, F., Bashir, G., George, J. A., El-Taji, H., & al-Ramadi, B. K. (2013). Intravenous administration of manuka honey inhibits tumor growth and improves host survival when used in combination with chemotherapy in a melanoma mouse model. PLoS ONE, 8, e55993. https://doi.org/10.1371/journal.pone.0055993
Ferreira, I. C. F. R., Aires, E., Barreira, J. C. M., & Estevinho, L. M. (2009). Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chemistry, 114, 1438–1443. https://doi.org/10.1016/j.foodchem.2008.11.028
Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chemical and Pharmaceutical Bulletin, 36, 2090–2097. https://doi.org/10.1248/cpb.36.2090
Hossen, M. S., Ali, M. Y., Jahurul, M. H. A., Abdel-Daim, M. M., Hua Gan, S., & Khalil, M. I. (2017). Beneficial roles of honey polyphenols against some human degenerative diseases: A review. Pharmacological Reports, 69, 1194–1205. https://doi.org/10.1016/j.pharep.2017.07.002
Junie, L. M., Vică, M. L., Glevitzky, M., & Matei, H. V. (2016). Physico-chemical characterization and antibacterial activity of different types of honey tested on strains isolated from hospitalized patients. Journal of Apicultural Science, 60, 5–17. https://doi.org/10.1515/jas-2016-0013.
Khataybeh, B., Jaradat, Z., & Ababneh, Q. (2023). Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. Journal of Ethnopharmacology, 317, 116830. https://doi.org/10.1016/j.jep.2023.116830
Khatun, M. A., Razzak, M., Hossain, M. A., Hossain, A., Islam, M., Shahjalal, M., Khan, R. A., & Huque, R. (2022). Gamma radiation processing of honey of Mustard, Black seed and Lychee flower: Measurement of antioxidant, antimicrobial, and Fourier transform infrared (FT-IR) spectra. Measurement: Food, 6, 100026.
https://doi.org/10.1016/j.meafoo.2022.100026
Kwakman, P. H. S., Velde, A. A. T., de Boer, L., Speijer, D., Vandenbroucke‐Grauls, C. M. J. E., & Zaat, S. A. J. (2010). How honey kills bacteria. FASEB Journal, 24, 2576–2582. https://doi.org/10.1096/fj.09-150789
Marić, A., Jovanov, P., Sakač, M., Novaković, A., Hadnađev, M., Pezo, L., Mandić, A., Milićević, N., Đurović, A., & Gadžurić, S. (2021). A comprehensive study of parameters correlated with honey health benefits. RSC Advances, 11, 12434–12441. https://doi.org/10.1039/D0RA10887A
Matzen, R. D., Zinck Leth-Espensen, J., Jansson, T., Nielsen, D. S., Lund, M. N., & Matzen, S. (2018). The antibacterial effect in vitro of honey derived from various Danish flora. Dermatology Research and Practice, 2018, 7021713. https://doi.org/10.1155/2018/7021713
Moskwa, J., Borawska, M. H., Markiewicz-Zukowska, R., Puscion-Jakubik, A., Naliwajko, S. K., Socha, K., & Soroczynska, J. (2014). Polish natural bee honeys are anti-proliferative and anti-metastatic agents in human glioblastoma multiforme U87MG cell line. PLoS ONE, 9, e90533. https://doi.org/10.1371/journal.pone.0090533
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
Ongalbek, D., Tokul-Ölmez, Ö., Şahin, B., Küçükaydın, S., Aydoğmuş-Öztürk, F., Sıcak, Y., Yeskaliyeva, B., & Öztürk, M. (2024). Classification of buckwheat honey produced in Kazakhstan according to their biochemical ingredients and bioactivities by chemometric approach. Food Chemistry, 451, 139409. https://doi.org/10.1016/j.foodchem.2024.139409
Petisca, C., Henriques, A. R., Pérez-Palacios, T., Pinho, O., & Ferreira, I. M. P. L. V. O. (2014). Assessment of hydroxymethylfurfural and furfural in commercial bakery products. Journal of Food Composition and Analysis, 33, 20–25. https://doi.org/10.1016/j.jfca.2013.10.004
Premratanachai, P., & Chanchao, C. (2014). Review of anticancer activities of bee products. Asian Pacific Journal of Tropical Biomedicine, 4, 337–344. https://doi.org/10.12980/APJTB.4.2014C1262
Rufián-Henares, J. A., & de la Cueva, S. P. (2008). Assessment of hydroxymethylfurfural intake in the Spanish diet. Food Additive and Contaminants Part A, 25, 1306–1312. https://doi.org/10.1080/02652030802163406
Sakač, M., Jovanov, P., Marić, A., Četojević-Simin, D., Novaković, A., Plavšić, D., Škrobot, D., & Kovač, R. (2022). Antioxidative, antibacterial and antiproliferative properties of honey types from the Western Balkans. Antioxidants, 11, 1120. https://doi.org/10.3390/antiox11061120
Sakač, M., Jovanov, P., Marić, A., Pezo, L., Kevrešan, Ž., Novaković, A., & Nedeljković, N. (2019). Physicochemical properties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chemistry, 276, 15−21. https://doi.org/10.1016/j.foodchem.2018.09.149
Schmidt, C., Eichelberger, K., & Rohm, H. (2021). New Zealand mānuka honey – A review on specific properties and possibilities to distinguish mānuka from kānuka honey. LWT-Food Science and Technology, 136, 110311. https://doi.org/10.1016/j.lwt.2020.110311
Szweda, P. (2017). Antimicrobial activity of honey. In V. de Alencar Arnaut de Toledo (Ed.), Honey analysis (pp. 215–232). IntechOpen. https://doi.org/10.5772/67117
Tomasini, D., Sampaio, M. R. F., Caldas, S. S., Buffon, J. G., Duarte, F. A., & Primel, E. G. (2012). Simultaneous determination of pesticides and 5-hydroxymethylfurfural in honey by the modified QuEChERS method and liquid chromatography coupled to tandem mass spectrometry. Talanta, 99, 380–386. https://doi.org/10.1016/j.talanta.2012.05.068
Trisha, S., Mortuza, M. G., Rana, J., Islam, K. H., Ferdoush, Z., Antora, R. A., Akash, S. I., Aziz, M. G., & Uddin, M. B. (2023). Evaluation of the physicochemical qualities and antioxidant properties of some Bangladeshi varieties of honey: A comparative study. Journal of Agriculture and Food Research, 14, 100837. https://doi.org/10.1016/j.jafr.2023.100837
van den Berg, A. J. J., van den Worm, E., Quarles van Ufford, H. C., Halkes, S. B. A., Hoekstra, M. J., & Beukelman, C. J. (2013). An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey. Journal of Wound Care, 17, 4. https://doi.org/10.12968/jowc.2008.17.4.28839
Wong, L. Y., Nigam, P. S., & Owusu-Apenten, R. (2018). Effect of iron and hydrogen peroxide supplementation on the total phenols content and cytotoxicity of honey for MCF-7 breast cancer cells. Journal of Advances in Biology & Biotechnology, 18, 1–10. https://doi.org/10.9734/JABB/2018/42344
