EXTRACTION OF THIACLOPRID FROM HONEY USING AQUEOUS BIPHASIC SYSTEMS BASED ON POTASSIUM PHOSPHATE AND IONIC LIQUIDS
Sažetak
Thiacloprid, a widely used neonicotinoid pesticide, poses a significant health risk when present in honey. Conventional extraction techniques are often complex and time-consuming, highlighting the need for more efficient methods. This study investigated the application of aqueous biphasic systems (ABS) based on ionic liquids (ILs) in combination with the kosmotropic salt potassium phosphate (K₃PO₄) for extracting thiacloprid from honey, intending to enhance extraction efficiency and simplify the process. Two commercially available ionic liquids, 1-butyl-3-methylimidazolium chloride ([C4mim][Cl]) and tetrabutylammonium chloride ([N4444][Cl]), were assessed for their phase-forming properties and extraction efficiencies. Both systems achieved extraction efficiencies exceeding 90%, with the [C4mim][Cl] system demonstrating superior performance, attaining an extraction efficiency (EE%) of 98.11 ± 1.26%. Additionally, spectrophotometric detection was applied, providing a faster, simpler, and more cost-effective alternative to chromatographic methods. The results underscore the potential of IL-based ABS systems with K₃PO₄ as a sustainable and effective alternative to traditional extraction methods, demonstrating a selective, rapid, and environmentally friendly approach for extracting thiacloprid from a complex matrix such as honey.
Reference
Bahrani, S., Raeissi, S., & Sarshar, M. (2015). Experimental investigation of ionic liquid pretreatment of sugarcane bagasse with 1,3-dimethylimadazolium dimethyl phosphate. Bioresource Technology, 185, 411–415. https://doi.org/10.1016/j.biortech.2015.02.085
Banno A, & Yabuki Y. (2020). Simultaneous analysis of seven neonicotinoid pesticides in agricultural products involving solid-phase extraction and surrogate compensation using liquid chromatography-tandem mass spectrometry. Journal of Pesticide Science, 45(1), 29–38. https://doi.org/10.1584/jpestics.D19-055
Berton, P., Kelley, S. P., Bridges, N. J., Klingshirn, M. A., Huddleston, J. G., Willauer, H. D., Baldwin, J. W., Moody, M. L., & Rogers, R. D. (2019). Water in solutions of chaotropic and kosmotropic salts: A Differential Scanning Calorimetry investigation. Journal of Chemical & Engineering Data, 64, 4781–4792. https://doi.org/10.1021/acs.jced.9b00222
Bridges, N. J, Gutowski, K.E, & Rogers, R. D. (2007). Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt–salt ABS), Green Chemistry, 9(2), 177–183. https://doi.org/10.1039/B611628K
Carreira, A. R. F., Rocha, S. N., e Silva, F. A., Sintra, T. E., Passos, H., Ventura, S. P. M., & Coutinho, J. A. P. (2021). Amino-acid-based chiral ionic liquids characterization and application in aqueous biphasic systems. Fluid Phase Equilibria, 542–543, 113091. https://doi.org/10.1016/j.fluid.2021.113091
ChemSpider-Search and Share Chemists, https://www.chemspider.com, 2024, accessed 17 August 2024.
Cianciosi, D., Forbes-Hernández, T. Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P. P., Zhang, J., Lamas, L. B., Florez, S. M., Toyos, P. A., Quiles, J. L., Giampieri, F. & Battino, M. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322. https://doi.org/10.3390/molecules23092322
Dimitrijević, A., Ignjatović, L., Tot, A., Vraneš, M., Zec, N., Gadžurić, S., & Trtić-Petrović, T. (2017). Simultaneous extraction of pesticides of different polarity applying aqueous biphasic systems based on ionic liquids. Journal of Molecular Liquids, 243, 646–653. https://doi.org/10.1016/j.molliq.2017.08.077
Dimitrijević, A., Jocić, A., Zec, N., Tot, A., Papović, S., Gadžurić, S., Vraneš, M., & Trtić-Petrović, T. (2019). Improved single-step extraction performance of aqueous biphasic systems using novel symmetric ionic liquids for the decolorisation of toxic dye effluents. Journal of Industrial and Engineering Chemistry, 76, 500–507. https://doi.org/10.1016/j.jiec.2019.04.017
Egorova, K. S., Gordeev, E. G., & Ananikov, V. P. (2017). Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chemical Reviews, 117, 7132–7189. https://doi.org/10.1021/acs.chemrev.6b00562
El-Nahhal, Y. (2020). Pesticide residues in honey and their potential reproductive toxicity. Science of the Total Environment, 741, 139953. https://doi.org/10.1016/j.scitotenv.2020.139953
Francisco, R., Almeida, C., Sousa, A.C.A., Neves, M.C., & Freire, M.G. (2022). High Performance of Ionic-Liquid-Based materials to remove insecticides. International Journal of Molecular Sciences, 23(6), 2989. https://doi.org/10.3390/ijms23062989
Freire, M. G., Carvalho, P. J., Silva, A. M. S., Santos, L. M. N. B. F., Rebelo, L. P. N., Marrucho, I. M., & Coutinho, J. A. P. (2009). Ion specific effects on the mutual solubilities of water and hydrophobic ionic liquids. The Journal of Physical Chemistry B, 113, 202–211. https://doi.org/10.1021/jp8080035
Freire, M. G., Cláudio, A. F. M., Araújo, J. M. M., Coutinho, J. A. P., Marrucho, I. M., Lopes, J. N. C., & Rebelo, L. P. N. (2012). Aqueous biphasic systems: a boost brought about by using ionic liquids. Chemical Society Reviews, 41, 4966. https://doi.org/10.1039/c2cs35151j
Ghorbanizamani, F., & Timur, S. (2018). Ionic liquids from biocompatibility and electrochemical aspects toward applying in biosensing devices. Analytical Chemistry, 90, 640–648. https://doi.org/10.1021/acs.analchem.7b03596
Hejazifar, M., Lanaridi, O., & Bica-Schröder, K. (2020). Ionic liquid based microemulsions: A review. Journal of Molecular Liquids, 303, 112264. https://doi.org/10.1016/j.molliq.2019.112264
Izgorodina, E. I., Seeger, Z. L., Scarborough, D. L. A., & Tan, S. Y. S. (2017). Quantum chemical methods for the prediction of energetic, physical, and spectroscopic properties of ionic liquids. Chemical Reviews, 117(10), 6696–6754. https://doi.org/10.1021/acs.chemrev.6b00528
Jha, I., Kumar, A., & Venkatesu, P. (2015). The overriding roles of concentration and hydrophobic effect on structure and stability of heme protein induced by imidazolium-based ionic liquids. The Journal of Physical Chemistry B, 119(26), 8357–8368. https://doi.org/10.1021/acs.jpcb.5b04660
Kaur, G., Kumar, H., & Singla, M. (2022). Diverse applications of ionic liquids: A comprehensive review. Journal of Molecular Liquids, 351, 118556. https://doi.org/10.1016/j.molliq.2022.118556
Kerkich K, Bouargane B, el Laghdach A, Souhail B, & Kadmi Y. (2024). Recent advances in the extraction, purification and analysis of emerging pesticides in honey products: A review. Journal of Food Composition and Analysis. 127, 105947. https://doi.org/10.1016/j.jfca.2023.105947
Ligor, M., Bukowska, M., Ratiu, I. A., Gadzała-Kopciuch, R., & Buszewski, B. (2020). Determination of neonicotinoids in honey samples originated from Poland and other world countries. Molecules, 25(24), 5817. https://doi.org/10.3390/molecules25245817
Louros, C. L. S., Cláudio, A. F. M., Neves, C. M. S. S., Freire, M. G., Marrucho, I. M., Pauly, J., & Coutinho, J. A. P. (2010). Extraction of biomolecules using phosphonium-based ionic liquids + K3PO4 aqueous biphasic systems. International Journal of Molecular Sciences, 11, 1777–1791. https://doi.org/10.3390/ijms11041777
Marić, A., Jovanov, P., Gadžurić, S., Trtić-Petrović, T., Sakač, M., Tot, A., Bertić, M., & Vraneš, M. (2023). Application of biodegradable cholinium ionic liquids for the extraction of 5-hydroxymethylfurfural (HMF) from honey. RSC Advances, 13, 32714–32721. https://doi.org/10.1039/D3RA06077B
Marques, C. F. C, Mourão, T., Neves, C. M. S. S., Lima, A.S., Boal-Palheiros, I., Coutinho, J.A.P, & Freire, M.G. (2013). Aqueous biphasic systems composed of ionic liquids and sodium carbonate as enhanced routes for the extraction of tetracycline. Biotechnology Progress, 29(3), 645–654. https://doi.org/10.1002/btpr.1708
Masiá A, Suarez-Varela MM, Llopis-Gonzalez A, Picó Y. (2016). Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Analytica Chimica Acta, 936, 40–61. https://doi.org/10.1016/j.aca.2016.07.023
Merchuk, J. C., Andrews, B. A., & Asenjo, J. A. (1998). Aqueous two-phase systems for protein separation. Journal of Chromatography B: Biomedical Sciences and Applications, 711, 285–293. https://doi.org/10.1016/S0378-4347(97)00594-X
Najdanovic-Visak, V., Lopes, J., Visak, Z., Trindade, J., & Rebelo, L. (2007). Salting-out in aqueous solutions of ionic liquids and K3PO4: Aqueous biphasic systems and salt precipitation. International Journal of Molecular Sciences, 8, 736–748. https://doi.org/10.3390/i8080736
Nie, L., Zheng, Z., Lu, M., Yao, S., & Guo, D. (2022). Phase behavior of ionic liquid-based aqueous two-phase systems. International Journal of Molecular Sciences, 23, 12706. https://doi.org/10.3390/ijms232012706
Olas, B. (2020). Honey and its phenolic compounds as an effective natural medicine for cardiovascular diseases in humans? Nutrients, 12(2), 283. https://doi.org/10.3390/nu12020283
Pei, Y., Wang, J., Liu, L., Wu, K., & Zhao, Y. (2007). Liquid−liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts. Journal of Chemical & Engineering Data, 52, 2026–2031. https://doi.org/10.1021/je700315u
Ravelo-Pérez, L.M, Hernández-Borges, J., Herrera-Herrera A. V., & Rodríguez-Delgado, M. Á. (2009). Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid–liquid microextraction. Analytical and Bioanalytical Chemistry, 395(7), 2387–2395. https://doi.org/10.1007/s00216-009-3133-x
Richu, Sharmhal, A., Kumar, A., & Kumar, A. (2022). Insights into the applications and prospects of ionic liquids towards the chemistry of biomolecules. Journal of Molecular Liquids, 368, 120580. https://doi.org/10.1016/j.molliq.2022.120580
Siede, R., Faust, L., Meixner, M. D., Maus, C., Grünewald, B., & Büchler, R. (2017). Performance of honey bee colonies under a long‐lasting dietary exposure to sublethal concentrations of the neonicotinoid insecticide thiacloprid. Pest management science, 73(7), 1334-1344. https://doi.org/10.1002/ps.4547
Tu, X., & Chen, W. (2021). Overview of analytical methods for the determination of neonicotinoid pesticides in honeybee products and honeybee. Critical Reviews in Analytical Chemistry, 51(4), 329-338. https://doi.org/10.1080/10408347.2020.1728516
Ward, L. T., Hladik, M. L., Guzman, A., Winsemius, S., Bautista, A., Kremen, C., & Mills, N. J. (2022). Pesticide exposure of wild bees and honey bees foraging from field border flowers in intensively managed agriculture areas. Science of the Total Environment, 831, 154697. https://doi.org/10.1016/j.scitotenv.2022.154697
Welton, T. (2004). Ionic liquids in catalysis. Coordination Chemistry Reviews, 248, 2459–2477. https://doi.org/10.1016/j.ccr.2004.04.015
Yang, C., Ran, L., Xu, M., Ren, D., & Yi, L. (2019). In situ ionic liquid dispersive liquid–liquid microextraction combined with ultra high performance liquid chromatography for determination of neonicotinoid insecticides in honey samples. Journal of Separation Science. 42(10), 1930–1937. https://doi.org/10.1002/jssc.201801263
Zafarani-Moattar, M. T., & Hamzehzadeh, S. (2010). Salting-out effect, preferential exclusion, and phase separation in aqueous solutions of chaotropic water-miscible ionic liquids and kosmotropic salts: effects of temperature, anions, and cations. Journal of Chemical & Engineering Data, 55(4), 1598–1610. https://doi.org/10.1021/je900681b
Zhang, L., Chen, F., Liu, S., Chen, B., & Pan, C. (2012). Ionic liquid‐based vortex‐assisted dispersive liquid–liquid microextraction of organophosphorus pesticides in apple and pear. Journal of Separation Science, 35(18), 2514–2519. https://doi.org/10.1002/jssc.201101060
