EXTRACTION OF THIACLOPRID FROM HONEY USING AQUEOUS BIPHASIC SYSTEMS BASED ON POTASSIUM PHOSPHATE AND IONIC LIQUIDS

  • Aleksandar Marić Insitutute of Food Technology in Novi Sad, University of Novi Sad, Serbia
  • Pavle Jovanov Institute of Food Technology in Novi Sad
  • Marijana Sakač Institute of Food Technology in Novi Sad
  • Bojana Radić Institute of Food Technology in Novi Sad
  • Branislava Đermanović Institute of Food Technology in Novi Sad
  • Slobodan Gadžurić Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection

Sažetak


Thiacloprid, a widely used neonicotinoid pesticide, poses a significant health risk when present in honey. Conventional extraction techniques are often complex and time-consuming, highlighting the need for more efficient methods. This study investigated the application of aqueous biphasic systems (ABS) based on ionic liquids (ILs) in combination with the kosmotropic salt potassium phosphate (K₃PO₄) for extracting thiacloprid from honey, intending to enhance extraction efficiency and simplify the process. Two commercially available ionic liquids, 1-butyl-3-methylimidazolium chloride ([C4mim][Cl]) and tetrabutylammonium chloride ([N4444][Cl]), were assessed for their phase-forming properties and extraction efficiencies. Both systems achieved extraction efficiencies exceeding 90%, with the [C4mim][Cl] system demonstrating superior performance, attaining an extraction efficiency (EE%) of 98.11 ± 1.26%. Additionally, spectrophotometric detection was applied, providing a faster, simpler, and more cost-effective alternative to chromatographic methods. The results underscore the potential of IL-based ABS systems with K₃PO₄ as a sustainable and effective alternative to traditional extraction methods, demonstrating a selective, rapid, and environmentally friendly approach for extracting thiacloprid from a complex matrix such as honey.

Reference

Bahrani, S., Raeissi, S., & Sarshar, M. (2015). Experimental investigation of ionic liquid pretreatment of sugarcane bagasse with 1,3-dimethylimadazolium dimethyl phosphate. Bioresource Technology, 185, 411–415. https://doi.org/10.1016/j.biortech.2015.02.085

Banno A, & Yabuki Y. (2020). Simultaneous analysis of seven neonicotinoid pesticides in agricultural products involving solid-phase extraction and surrogate compensation using liquid chromatography-tandem mass spectrometry. Journal of Pesticide Science, 45(1), 29–38. https://doi.org/10.1584/jpestics.D19-055

Berton, P., Kelley, S. P., Bridges, N. J., Klingshirn, M. A., Huddleston, J. G., Willauer, H. D., Baldwin, J. W., Moody, M. L., & Rogers, R. D. (2019). Water in solutions of chaotropic and kosmotropic salts: A Differential Scanning Calorimetry investigation. Journal of Chemical & Engineering Data, 64, 4781–4792. https://doi.org/10.1021/acs.jced.9b00222

Bridges, N. J, Gutowski, K.E, & Rogers, R. D. (2007). Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt–salt ABS), Green Chemistry, 9(2), 177–183. https://doi.org/10.1039/B611628K

Carreira, A. R. F., Rocha, S. N., e Silva, F. A., Sintra, T. E., Passos, H., Ventura, S. P. M., & Coutinho, J. A. P. (2021). Amino-acid-based chiral ionic liquids characterization and application in aqueous biphasic systems. Fluid Phase Equilibria, 542–543, 113091. https://doi.org/10.1016/j.fluid.2021.113091

ChemSpider-Search and Share Chemists, https://www.chemspider.com, 2024, accessed 17 August 2024.

Cianciosi, D., Forbes-Hernández, T. Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P. P., Zhang, J., Lamas, L. B., Florez, S. M., Toyos, P. A., Quiles, J. L., Giampieri, F. & Battino, M. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322. https://doi.org/10.3390/molecules23092322

Dimitrijević, A., Ignjatović, L., Tot, A., Vraneš, M., Zec, N., Gadžurić, S., & Trtić-Petrović, T. (2017). Simultaneous extraction of pesticides of different polarity applying aqueous biphasic systems based on ionic liquids. Journal of Molecular Liquids, 243, 646–653. https://doi.org/10.1016/j.molliq.2017.08.077

Dimitrijević, A., Jocić, A., Zec, N., Tot, A., Papović, S., Gadžurić, S., Vraneš, M., & Trtić-Petrović, T. (2019). Improved single-step extraction performance of aqueous biphasic systems using novel symmetric ionic liquids for the decolorisation of toxic dye effluents. Journal of Industrial and Engineering Chemistry, 76, 500–507. https://doi.org/10.1016/j.jiec.2019.04.017

Egorova, K. S., Gordeev, E. G., & Ananikov, V. P. (2017). Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chemical Reviews, 117, 7132–7189. https://doi.org/10.1021/acs.chemrev.6b00562

El-Nahhal, Y. (2020). Pesticide residues in honey and their potential reproductive toxicity. Science of the Total Environment, 741, 139953. https://doi.org/10.1016/j.scitotenv.2020.139953

Francisco, R., Almeida, C., Sousa, A.C.A., Neves, M.C., & Freire, M.G. (2022). High Performance of Ionic-Liquid-Based materials to remove insecticides. International Journal of Molecular Sciences, 23(6), 2989. https://doi.org/10.3390/ijms23062989

Freire, M. G., Carvalho, P. J., Silva, A. M. S., Santos, L. M. N. B. F., Rebelo, L. P. N., Marrucho, I. M., & Coutinho, J. A. P. (2009). Ion specific effects on the mutual solubilities of water and hydrophobic ionic liquids. The Journal of Physical Chemistry B, 113, 202–211. https://doi.org/10.1021/jp8080035

Freire, M. G., Cláudio, A. F. M., Araújo, J. M. M., Coutinho, J. A. P., Marrucho, I. M., Lopes, J. N. C., & Rebelo, L. P. N. (2012). Aqueous biphasic systems: a boost brought about by using ionic liquids. Chemical Society Reviews, 41, 4966. https://doi.org/10.1039/c2cs35151j

Ghorbanizamani, F., & Timur, S. (2018). Ionic liquids from biocompatibility and electrochemical aspects toward applying in biosensing devices. Analytical Chemistry, 90, 640–648. https://doi.org/10.1021/acs.analchem.7b03596

Hejazifar, M., Lanaridi, O., & Bica-Schröder, K. (2020). Ionic liquid based microemulsions: A review. Journal of Molecular Liquids, 303, 112264. https://doi.org/10.1016/j.molliq.2019.112264

Izgorodina, E. I., Seeger, Z. L., Scarborough, D. L. A., & Tan, S. Y. S. (2017). Quantum chemical methods for the prediction of energetic, physical, and spectroscopic properties of ionic liquids. Chemical Reviews, 117(10), 6696–6754. https://doi.org/10.1021/acs.chemrev.6b00528

Jha, I., Kumar, A., & Venkatesu, P. (2015). The overriding roles of concentration and hydrophobic effect on structure and stability of heme protein induced by imidazolium-based ionic liquids. The Journal of Physical Chemistry B, 119(26), 8357–8368. https://doi.org/10.1021/acs.jpcb.5b04660

Kaur, G., Kumar, H., & Singla, M. (2022). Diverse applications of ionic liquids: A comprehensive review. Journal of Molecular Liquids, 351, 118556. https://doi.org/10.1016/j.molliq.2022.118556

Kerkich K, Bouargane B, el Laghdach A, Souhail B, & Kadmi Y. (2024). Recent advances in the extraction, purification and analysis of emerging pesticides in honey products: A review. Journal of Food Composition and Analysis. 127, 105947. https://doi.org/10.1016/j.jfca.2023.105947

Ligor, M., Bukowska, M., Ratiu, I. A., Gadzała-Kopciuch, R., & Buszewski, B. (2020). Determination of neonicotinoids in honey samples originated from Poland and other world countries. Molecules, 25(24), 5817. https://doi.org/10.3390/molecules25245817

Louros, C. L. S., Cláudio, A. F. M., Neves, C. M. S. S., Freire, M. G., Marrucho, I. M., Pauly, J., & Coutinho, J. A. P. (2010). Extraction of biomolecules using phosphonium-based ionic liquids + K3PO4 aqueous biphasic systems. International Journal of Molecular Sciences, 11, 1777–1791. https://doi.org/10.3390/ijms11041777

Marić, A., Jovanov, P., Gadžurić, S., Trtić-Petrović, T., Sakač, M., Tot, A., Bertić, M., & Vraneš, M. (2023). Application of biodegradable cholinium ionic liquids for the extraction of 5-hydroxymethylfurfural (HMF) from honey. RSC Advances, 13, 32714–32721. https://doi.org/10.1039/D3RA06077B

Marques, C. F. C, Mourão, T., Neves, C. M. S. S., Lima, A.S., Boal-Palheiros, I., Coutinho, J.A.P, & Freire, M.G. (2013). Aqueous biphasic systems composed of ionic liquids and sodium carbonate as enhanced routes for the extraction of tetracycline. Biotechnology Progress, 29(3), 645–654. https://doi.org/10.1002/btpr.1708

Masiá A, Suarez-Varela MM, Llopis-Gonzalez A, Picó Y. (2016). Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Analytica Chimica Acta, 936, 40–61. https://doi.org/10.1016/j.aca.2016.07.023

Merchuk, J. C., Andrews, B. A., & Asenjo, J. A. (1998). Aqueous two-phase systems for protein separation. Journal of Chromatography B: Biomedical Sciences and Applications, 711, 285–293. https://doi.org/10.1016/S0378-4347(97)00594-X

Najdanovic-Visak, V., Lopes, J., Visak, Z., Trindade, J., & Rebelo, L. (2007). Salting-out in aqueous solutions of ionic liquids and K3PO4: Aqueous biphasic systems and salt precipitation. International Journal of Molecular Sciences, 8, 736–748. https://doi.org/10.3390/i8080736

Nie, L., Zheng, Z., Lu, M., Yao, S., & Guo, D. (2022). Phase behavior of ionic liquid-based aqueous two-phase systems. International Journal of Molecular Sciences, 23, 12706. https://doi.org/10.3390/ijms232012706

Olas, B. (2020). Honey and its phenolic compounds as an effective natural medicine for cardiovascular diseases in humans? Nutrients, 12(2), 283. https://doi.org/10.3390/nu12020283

Pei, Y., Wang, J., Liu, L., Wu, K., & Zhao, Y. (2007). Liquid−liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts. Journal of Chemical & Engineering Data, 52, 2026–2031. https://doi.org/10.1021/je700315u

Ravelo-Pérez, L.M, Hernández-Borges, J., Herrera-Herrera A. V., & Rodríguez-Delgado, M. Á. (2009). Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid–liquid microextraction. Analytical and Bioanalytical Chemistry, 395(7), 2387–2395. https://doi.org/10.1007/s00216-009-3133-x

Richu, Sharmhal, A., Kumar, A., & Kumar, A. (2022). Insights into the applications and prospects of ionic liquids towards the chemistry of biomolecules. Journal of Molecular Liquids, 368, 120580. https://doi.org/10.1016/j.molliq.2022.120580

Siede, R., Faust, L., Meixner, M. D., Maus, C., Grünewald, B., & Büchler, R. (2017). Performance of honey bee colonies under a long‐lasting dietary exposure to sublethal concentrations of the neonicotinoid insecticide thiacloprid. Pest management science, 73(7), 1334-1344. https://doi.org/10.1002/ps.4547

Tu, X., & Chen, W. (2021). Overview of analytical methods for the determination of neonicotinoid pesticides in honeybee products and honeybee. Critical Reviews in Analytical Chemistry, 51(4), 329-338. https://doi.org/10.1080/10408347.2020.1728516

Ward, L. T., Hladik, M. L., Guzman, A., Winsemius, S., Bautista, A., Kremen, C., & Mills, N. J. (2022). Pesticide exposure of wild bees and honey bees foraging from field border flowers in intensively managed agriculture areas. Science of the Total Environment, 831, 154697. https://doi.org/10.1016/j.scitotenv.2022.154697

Welton, T. (2004). Ionic liquids in catalysis. Coordination Chemistry Reviews, 248, 2459–2477. https://doi.org/10.1016/j.ccr.2004.04.015

Yang, C., Ran, L., Xu, M., Ren, D., & Yi, L. (2019). In situ ionic liquid dispersive liquid–liquid microextraction combined with ultra high performance liquid chromatography for determination of neonicotinoid insecticides in honey samples. Journal of Separation Science. 42(10), 1930–1937. https://doi.org/10.1002/jssc.201801263

Zafarani-Moattar, M. T., & Hamzehzadeh, S. (2010). Salting-out effect, preferential exclusion, and phase separation in aqueous solutions of chaotropic water-miscible ionic liquids and kosmotropic salts: effects of temperature, anions, and cations. Journal of Chemical & Engineering Data, 55(4), 1598–1610. https://doi.org/10.1021/je900681b

Zhang, L., Chen, F., Liu, S., Chen, B., & Pan, C. (2012). Ionic liquid‐based vortex‐assisted dispersive liquid–liquid microextraction of organophosphorus pesticides in apple and pear. Journal of Separation Science, 35(18), 2514–2519. https://doi.org/10.1002/jssc.201101060

Objavljeno
2024/11/13
Broj časopisa
Rubrika
Originalni naučni rad