EFFECT OF N, Ca, MAP, AND 1-MCP TREATMENTS ON ETHYLENE- IAD INDEX INTERACTIONS DURING APRICOT STORAGE AND SHELF LIFE

  • Renata Kovač University of Novi Sad, Institute of Food Technology in Novi Sad
  • Žarko Kevrešan University of Novi Sad, Institute of Food Technology in Novi Sad
  • Nenad Magazin University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, Novi Sad, Serbia
  • Jasna Mastilović University of Novi Sad Biosense Institute, Dr Zorana Đinđića 1, Novi Sad, Serbia
  • Maja Milović University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, Novi Sad, Serbia
  • Jelena Kalajdžić University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, Novi Sad, Serbia
  • Biserka Milić University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, Novi Sad, Serbia
  • Gordana Barać University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, Novi Sad, Serbia
Keywords: stone fruit, postharvest, DA meter, preharvest treatments

Abstract


Aim of this study is to investigate the interrelation between ethylene production, DA index (IAD), and postharvest treatments in four apricot (Prunus armeniaca L.) cultivars: ‘Buda,’ ‘NS Kasnocvetna,’ ‘NS Rodna,’ and ‘NS6.’ Apricots were harvested with IAD values between 0.41–0.80, stored at 1°C for 15 days, followed by 3 days of shelf life at room temperature. Ethylene production and IAD were measured at harvest, after cold storage, and after shelf life. Preharvest treatments included nitrogen (N) and calcium (Ca), while postharvest treatments included modified atmosphere packaging (MAP) and 1-methylcyclopropene (MCP). Results showed cultivar-specific ethylene responses and IAD, with 'Buda' exhibited the most rapid decline of IAD and highest ethylene levels, and 'NS6' showing a lower decrease of IAD, especially under MAP and Ca treatments. Postharvest treatments effectively reduced a decrease of IAD for all tested cultivars. The findings highlight the need for cultivar-specific calibration of the IAD index to optimize the management of apricots at a given ripeness stage, thereby maintaining their overall quality and storage capability.

 

References

Ayour, J., Sagar, M., Harrak, H., Alahyane,. A., Alfeddy, M.N., Taourirte, M., & Benichou, M.( 2017). Evolution of some fruit quality criteria during ripening of twelve new Moroccan apricot clones (Prunus armeniaca L.). Scientia Horticulturae, 215, 72-79. https://doi.org/10.1016/j.scienta.2016.12.010

Bartolini, S., Viti, R., & Zanol, G.C. (2006). Apricot cultivars and cold storage affect the total antioxidant capacity and glutathione content in fruit. Acta Horticulturae, 717, 359-362. https://doi.org/10.17660/ActaHortic.2006.717.72

Chen, Z., Qiaoli, M., Shuang, Z., Xiangling, L., Dan, W., Qingqing, G., & Qingjiang, W. (2024). Effect of pre-harvest calcium treatment on post-harvest fruit quality of nanfeng tangerine. Horticulturae, 10(4), 381. https://doi.org/10.3390/horticulturae10040381

Costa, G., Noferini, M., Fiori, G., & Torrigiani, P. (2009). Use of VIS/NIR spectroscopy to assess fruit ripening stage and improve management in post-harvest chain. Fresh Produce, 1, 35–41. https://hdl.handle.net/11585/81868

Crouch, I. (2003). 1-Methylcyclopropene (SmartFresh™) as an alternative to modified atmosphere and controlled atmosphere storage of apples and pears. Acta Horticulturae, 600, 433-440. https://doi.org/10.17660/ActaHortic.2003.600.64

Dauny P.T., Joyce D.C., & Gamby C. (2003). 1-methylcyclopropene influx and efflux in ‘Cox’ apple and ‘Hass’ avocado fruit. Postharvest Biology and Technology, 29, 101-105. https://doi.org/10.1016/S0925-5214(03)00042-5

Defilippi, B.G., San Juan, W., Valdes, H., Moya-León, M.A., Infante, R., & Campos-Vargas, R. (2009). The aroma development during storage of Castlebrite apricots as evaluated by gas chromatography, electronic nose, and sensory analysis. Postharvest Biology and Technology, 51(2), 212-219. https://doi.org/10.1016/j.postharvbio.2008.08.008

Dong, L., Lurie, S., & Zhou, H.W. (2002). Effect of 1-methylcyclopropene on ripening of ‘Canino’ apricots and ‘Royal Zee’ plums. Postharvest Biology and Technology, 24, 135-145. https://doi.org/10.1016/S0925-5214(01)00130-2

Fan, X., Shu, C., Zhao, K., Wang, X., Cao, J., & Jiang, W. (2018). Regulation of apricot ripening and softening process during shelf life by post-storage treatments of exogenous ethylene and 1-methylcyclopropene. Scientia Horticulturae, 232, 63-70. https://doi.org/10.1016/j.scienta.2017.12.061

Fan, X., Argenta, L., & Mattheis, J.P. (2000). Inhibition of ethylene action by 1-methylcyclopropene prolongs storage life of apricots. Postharvest Biology and Technology, 20(2), 135-142. https://doi.org/10.1016/S0925-5214(00)00121-6

Infante, R., Meneses, C., & Defilippi, B.G. (2008). Effect of harvest maturity stage on the sensory quality of ‘Palsteyn’apricot (Prunus armeniaca L.) after cold storage. Journal Horticultural Sciences, 83(6), 828-832. https://doi.org/10.1080/14620316.2008.11512468

Kan, J., Che, J., Xiem H.Y., & Jinm C.H. (2011). Effect of 1-methylcyclopropene on postharvest physiological changes of ‘Zaohong’plum. Acta Physiologiae Plantarum, 33(5), 1669-1677. https://doi.org/10.1007/s11738-010-0703-7

Khasawneh, A. E. R., Alsmairat, N., Othman, Y. A., Ayad, J. Y., Al-Qudah, T., & Leskovar, D. I. (2021). Influence of nitrogen source on physiology, yield and fruit quality of young apricot trees. Journal of Plant Nutrition, 44(17), 2597-2608. https://doi.org/10.1080/01904167.2021.1918718

Kovač, R., Kevrešan, Ž., Mastilović J., Magazin, N., Milić, B., Milović, M., Bajić, A., Kalajdžić, J., Barać, G., Keserović., Z. (2022). IAD values of apricot (Prunus armenica L.) at harvest in relation to fruit quality and sensory properties during cold storage and shelf life. New Zealand Journal of Crop and Horticultural Science, 50(2-3), 205-222. https://doi.org/10.1080/01140671.2022.2067189

Lara, I. (2013). Preharvest sprays and their effects on the postharvest quality of fruit. Stewart Postharvest Review, 3(5), 1-12. http://dx.doi.org/10.2212/spr.2013.3.5

Leccese, A., Bartolini, S., & Viti, R. (2007). Total antioxidant capacity and phenolics content in apricot fruits. International Journal of Fruit Science, 7(2), 3-16. https://doi.org/10.1300/J492v07n02_02

Mandic, A., Kevrešan, Ž., & Mastilovic, J. (2019). Development and validation of static headspace gas chromatography with flame ionization detection method for determination of ethylene. In Proceedings of the 6th South East Europe International Postharvest Conference, Quality Management in Postharvest Systems (pp. 26-28), Novi Sad, Serbia.

Mastilović, J., Kevrešan, Ž., Milović, M., Kovač, R., Milić, B., Magazin, N., Plavšić, D., & Kalajdžić, J. (2022). Effects of ripening stage and postharvest treatment on apricot (Prunus armeniaca L.) cv. NS4 delivered to the consumers. Journal of Food Processing and Preservation, 46(3), 6399. https://doi.org/10.1111/jfpp.16399

Özkaya, O., Yildirim, D., Dündar, Ö., & Tükel, S. S. (2016). Effects of 1-methylcyclopropene (1-MCP) and modified atmosphere packaging on postharvest storage quality of nectarine fruit. Scientia Horticulturae, 198, 454-461. https://doi.org/10.1016/j.scienta.2015.12.016

Palou L. & Crisosto C.H. (2003). Postharvest treatments to reduce the harmful effects of ethylene on apricots. Acta Horticulturae, 599, 31-38. doi.org/10.17660/ActaHortic.2003.599.1

Sadar, N., & Zanella, A. (2019). A study on the potential of IAD as a surrogate index of quality and storability in cv.‘Gala’Apple fruit. Agronomy, 9(10), 642. https://doi.org/10.3390/agronomy9100642

Stanley, J., Prakash, R., Marshall, R., & Schröder, R. (2013). Effect of harvest maturity and cold storage on correlations between fruit properties during ripening of apricot (Prunus armeniaca). Postharvest Biology and Technology, 82, 39-50. https://doi.org/10.1016/j.postharvbio.2013.02.020

Vanoli, M. & Buccheri, M. (2012). Overview of the methods for assessing harvest maturity. Stewart Postharvest Review, 11, 1-11. https://doi.org/10.2212/spr.2012.1.4

Vardi, N., Parlakpinar, H., Ozturk, F., Ates, B., Gul, M., Cetin A., Erdogan, A., & Otlu, A. (2008). Potent protective effect of apricot and beta-carotene on methotrexate-induced intestinal oxidative damage in rats. Food Chemistry and Toxicology, 46(9), 3015–3022. https://doi.org/10.1016/j.fct.2008.05.039

Zhang, P., Wei, Y., Xu, F., Wang, H., Chen, M., & Shao, X. (2019). Changes in the chlorophyll absorbance index (IAD) are related to peach fruit maturity. New Zealand Journal of Crop and Horticultural Science, 48(1), 34-46. https://doi.org/10.1080/01140671.2019.1664598

Ziosi, V., Noferini, M., Fiori, G., Tadiello, A, Trainotti, L., Casadoro, G., & Costa, G. (2008). A new index based on VIS spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biology and Technology, 49, 319-329. https://doi.org/10.1016/j.postharvbio.2008.01.017

Valdes, H, Pizarro, M. M., Campos-Vargas, R. R., Infante, R. R., & Defilippi, B. (2009). Effect of ethylene inhibitors on quality attributes of apricot cv. Modesto and Patterson during storage. Chilean Journal of Agricultural Research, 69(2), 134–144. http://hdl.handle.net/1807/45731

Published
2025/01/22
Section
Original research paper