CHICKPEA MILK: NUTRITIONAL PROFILE, FUNCTIONAL CHARACTERISTICS, BIOACTIVE COMPOUNDS, AND QUALITY ENHANCEMENT – A COMPREHENSIVE REVIEW-

"Exploring Chickpea Milk: A Comprehensive Review"

  • Aya HAMIOUD Bejaia University Faculty of Sciences of Nature and Life /Department of Biology Laboratory of Biomathematics, Biophysics, Biochemistry and Scientometry (L3BS) Bejaia, 06000. Algeria https://orcid.org/0009-0001-8357-2893
  • professor Faculty of Sciences of Nature and Life /Department of Biology Laboratory of Biomathematics, Biophysics, Biochemistry and Scientometry (L3BS) Bejaia, 06000. Algeria Chadli Bendjedid University of El-Tarf Faculty of Sciences of Nature and Life /Department of Agronomic sciences BP 73. EL-Tarf, 36000. Algeria https://orcid.org/0000-0003-4513-3467
  • doctor Faculty of Sciences of Nature and Life /Department of Biology Laboratory of Biomathematics, Biophysics, Biochemistry and Scientometry (L3BS) Bejaia, 06000. Algeria Faculty of Technology /Department of Process Engeneering, Bejaia, 06000. Algeria https://orcid.org/0000-0003-2539-9006
Keywords: plant-based beverage, proteins, pulses, bioactive compounds, novel technologies, functional properties, shelf-life

Abstract


The prevalence of cow’s milk allergies and lactose intolerance has been growing alongside the evolution of bovine milk consumption and production; consequently, the itching need for an alternative has been the subject of many studies and a growing trend in the milk industry. Plant-based milks have emerged as the most popular and suitable substitutes; they are beverages extracted from cereals, pseudo-cereals, legumes, nuts or seeds. Legumes, due to their high protein content have proven to be one of the successful options. One such legume is chickpea, which not only boasts rich protein content but also contains minerals, fibers, unsaturated fatty acids, bioactive compounds and antioxidant properties. Despite the limited studies available regarding the development of chickpea-based milk alternatives, this review draws upon insights from existing studies that have explored chickpea milk. It covers a range of topics, including the nutritional composition compared to other plant-based substitutes, the health benefits associated with bioactive and functional compounds, and the most novel methods employed in the extraction of non-dairy beverages.

References

Al-Ani, I. I. M. (2020). Producing drink like grafted milk from chickpeas and evaluation of its qualitative properties. International Journal of Drug Delivery Technology, 10(3), 374–377. https://doi.org/10.25258/ijddt.10.3.12

Atwaa, E. H., Ahdab, A., Elmaadawy, A., & Awaad, E. A. (2019). Production of fruit flavored probiotic rice milk beverage. Journal of Food and Dairy Sciences, 10(2), 453–458. https://doi.org/10.21608/jfds.2019.71360

Aydar, E. F., Tutuncu, S., & Ozcelik, B. (2020). Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. Journal of Functional Foods, 70(December 2019), 103975. https://doi.org/10.1016/j.jff.2020.103975

Bessada, S. M. F., Barreira, J. C. M., & Oliveira, M. B. P. P. (2019). Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends in Food Science & Technology, 93, 53–68. https://doi.org/10.1016/j.tifs.2019.08.022

Bocker, R., & Silva, E. K. (2022). Innovative technologies for manufacturing plant-based non-dairy alternative milk and their impact on nutritional, sensory and safety aspects. Future Foods, 5, 100098. https://doi.org/10.1016/j.fufo.2021.100098

Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., & Rajamohamed, S. H. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43(2), 537–546. https://doi.org/10.1016/j.foodres.2009.07.021

Brusati, M., Baroni, L., Rizzo, G., Giampieri, F., & Battino, M. (2023). Plant-based milk alternatives in child nutrition. Foods, 12(7), Article 7. https://doi.org/10.3390/foods12071544

Champ, M. M.-J. (2002). Non-nutrient bioactive substances of pulses. British Journal of Nutrition, 88(S3), 307–319. https://doi.org/10.1079/BJN2002721

Cichońska, P., & Ziarno, M. (2022). Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms, 10(1), 91. https://doi.org/10.3390/microorganisms10010091

Collard, K. M., & McCormick, D. P. (2021). A nutritional comparison of cow’s milk and alternative milk products. Academic Pediatrics, 21(6), 1067–1069. https://doi.org/10.1016/j.acap.2020.12.007

Duarte, C. M., Mota, J., Assunção, R., Martins, C., Ribeiro, A. C., Lima, A., Raymundo, A., Nunes, M. C., Ferreira, R. B., & Sousa, I. (2022a). New alternatives to milk from pulses: chickpea and lupin beverages with improved digestibility and potential bioactivities for human health. Frontiers in Nutrition, 9(July 2022), 1–12. https://doi.org/10.3389/fnut.2022.852907

Duarte, C. M., Mota, J., Assunção, R., Martins, C., Ribeiro, A. C., Lima, A., Raymundo, A., Nunes, M. C., Ferreira, R. B., & Sousa, I. (2022b). New alternatives to milk from pulses: chickpea and lupin beverages with improved digestibility and potential bioactivities for human health. Frontiers in Nutrition, 9, 852907. https://doi.org/10.3389/fnut.2022.852907

Duarte, C. M., Nunes, M. C., Gojard, P., Dias, C., Ferreira, J., Prista, C., Noronha, P., & Sousa, I. (2022). Use of European pulses to produce functional beverages – From chickpea and lupin as dairy alternatives. Journal of Functional Foods, 98(June). https://doi.org/10.1016/j.jff.2022.105287

Ferragut, V., Cruz, N. S., Trujillo, A., Guamis, B., & Capellas, M. (2009). Physical characteristics during storage of soy yogurt made from ultra-high pressure homogenized soymilk. Journal of Food Engineering, 92(1), 63–69. https://doi.org/10.1016/j.jfoodeng.2008.10.026

Fu, Y. H., & Zhang, F. C. (2013). Changes in isoflavone glucoside and aglycone contents of chickpea yoghurt during fermentation by Lactobacillus bulgaricus and Streptococcus thermophilus. Journal of Food Processing and Preservation, 37(5), 744–750. https://doi.org/10.1111/j.1745-4549.2012.00713.x

Ghribi, A. M., Gafsi, I. M., Blecker, C., Danthine, S., Attia, H., & Besbes, S. (2015). Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering, 165, 179–188. https://doi.org/10.1016/j.jfoodeng.2015.06.021

Gobbi, L., Ciano, S., Rapa, M., & Ruggieri, R. (2019). Biogenic amines determination in “plant milks.” Beverages, 5(2), Article 2. https://doi.org/10.3390/beverages5020040

Grasso, N., Lynch, N. L., Arendt, E. K., & O’Mahony, J. A. (2022). Chickpea protein ingredients: A review of composition, functionality, and applications. Comprehensive Reviews in Food Science and Food Safety, 21(1), 435–452. https://doi.org/10.1111/1541-4337.12878

Gupta, S., & Bisla, G. (2019). Nutritional and sensory characteristics of oat milk based yoghurt. International Journal of Applied Home Science, 6 (6-8), 261–265. https://doi.org/10.36537/IJAHS/6.6-8/261-265

Guzmán, T. J., Martínez-Ayala, A. L., García-López, P. M., Soto-Luna, I. C., & Gurrola-Díaz, C. M. (2021). Effect of the acute and chronic administration of Lupinus albus β-conglutin on glycaemia, circulating cholesterol, and genes potentially involved. Biomedicine & Pharmacotherapy, 133, 110969. https://doi.org/10.1016/j.biopha.2020.110969

Hassan, A. A., Aly, M. M. A., & El-Hadidie, S. T. (2012). Production of cereal-based probiotic beverages. World Applied Sciences Journal, 19, 1367–1380. https://doi.org/10.5829/idosi.wasj.2012.19.10.2797

Iorio, M. C., Bevilacqua, A., Corbo, M. R., Campaniello, D., Sinigaglia, M., & Altieri, C. (2019). A case study on the use of ultrasound for the inhibition of Escherichia coli O157:H7 and Listeria monocytogenes in almond milk. Ultrasonics Sonochemistry, 52, 477–483. https://doi.org/10.1016/j.ultsonch.2018.12.026

Jarpa-Parra, M. (2017). Lentil protein: A review of functional properties and food application. An overview of lentil protein functionality. International Journal of Food Science & Technology, 53(4), 892-903. https://doi.org/10.1111/ijfs.13685

Jukanti, A. K., Gaur, P. M., Gowda, C. L. L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. The British Journal of Nutrition, 108 Suppl 1, S11-26. https://doi.org/10.1017/S0007114512000797

Kamboj, R., & Nanda, V. (2017). Proximate composition, nutritional profile and health benefits of legumes – A review. Legume Research, 41(3), 325-332. https://doi.org/10.18805/LR-3748

Kameník, J., Saláková, A., Vyskočilová, V., Pechová, A., & Haruštiaková, D. (2017). Salt, sodium chloride or sodium? Content and relationship with chemical, instrumental and sensory attributes in cooked meat products. Meat Science, 131, 196–202. https://doi.org/10.1016/j.meatsci.2017.05.010

Kaur, M., & Singh, N. (2007). Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 102(1), 366–374. https://doi.org/10.1016/j.foodchem.2006.05.029

Kaur, R., & Prasad, K. (2021). Technological, processing and nutritional aspects of chickpea (Cicer arietinum)—A review. Trends in Food Science and Technology, 109(September 2020), 448–463. https://doi.org/10.1016/j.tifs.2021.01.044

Kishor, K., David, J., Tiwari, S., Singh, A., & Rai, B. (2017). Nutritional composition of chickpea (Cicer arietinum) milk. International Journal of Chemical Studies, 5(4), 1941-1944.

Kundu, P., Dhankhar, J., & Sharma, A. (2018). Development of non-dairy milk alternative using soymilk and almond milk. Current Research in Nutrition and Food Science, 6(1), 203–210. https://doi.org/10.12944/CRNFSJ.6.1.23

Lindahl, L., Ahlden, I., Oste, R., & Sjoholm, I. (1997). Homogeneous and stable cereal suspension and a method of making the same (United States Patent US5686123A). https://patents.google.com/patent/US5686123A/en

Lopes, M., Pierrepont, C., Duarte, C. M., Filipe, A., Medronho, B., & Sousa, I. (2020). Legume beverages from chickpea and lupin, as new milk alternatives. Foods, 9(10), Article 10. https://doi.org/10.3390/foods9101458

López-Martínez, L. X., Leyva-López, N., Gutiérrez-Grijalva, E. P., & Heredia, J. B. (2017). Effect of cooking and germination on bioactive compounds in pulses and their health benefits. Journal of Functional Foods, 38, 624–634. https://doi.org/10.1016/j.jff.2017.03.002

Ma, K. K., Greis, M., Lu, J., Nolden, A. A., McClements, D. J., & Kinchla, A. J. (2022). Functional performance of plant proteins. Foods, 11(4), Article 4. https://doi.org/10.3390/foods11040594

Maghsoudlou, Y., Aalami, M., Mashkour, M., & Shahraki, M. (2016). Optimization of ultrasound-assisted stabilization and formulation of almond milk. Journal of Food Processing and Preservation, 40, 828–839. https://doi.org/10.1111/jfpp.12661

Makarapong, D., Tantayanon, S., Gowanit, C., Jareonsawat, J., Samngamnim, S., Wataradee, S., Hogeveen, H., & Inchaisri, C. (2022). Use of UV-C irradiation as pre-treatment for controlling the number of microorganisms in raw milk after milking. Retrieved from SSRN: https://ssrn.com/abstract=4097513 or http://dx.doi.org/10.2139/ssrn.4097513

Makinde, F., & Adebile, T. (2018). Influence of processing treatments on quality of vegetable milk from almond (Terminalia catappa) kernels. Acta Scientific Nutritional Health, 2(6), 37-42. https://actascientific.com/ASNH/pdf/ASNH-02-0090.pdf

Mäkinen, O. E., Wanhalinna, V., Zannini, E., & Arendt, E. K. (2015). Foods for special dietary needs: non-dairy plant-based milk substitutes and fermented dairy-type products. 56(3), 339–349. https://doi.org/10.1080/10408398.2012.761950

Malaki Nik, A., Tosh, S., Poysa, V., Woodrow, L., & Corredig, M. (2008). Physicochemical characterization of soymilk after step-wise centrifugation. Food Research International, 41(3), 286–294. https://doi.org/10.1016/j.foodres.2007.12.005

Manzoor, M., Manzoor, A., Siddique, R., & Ahmad, N. (2017). Nutritional and sensory properties of cashew seed (Anacardium occidentale) Milk. Modern Concepts & Developments in Agronomy, 1(1). MCDA.000501. 2017. https://doi.org/10.31031/MCDA.2017.01.000501

Mefleh, M., Pasqualone, A., Caponio, F., & Faccia, M. (2022). Legumes as basic ingredients in the production of dairy‐free cheese alternatives: A review. Journal of the Science of Food and Agriculture, 102(1), Article 1. https://doi.org/10.1002/jsfa.11502

Mendly-Zambo, Z., Powell, L. J., & Newman, L. L. (2021). Dairy 3.0: Cellular agriculture and the future of milk. Food, Culture & Society, 24(5), Article 5. https://doi.org/10.1080/15528014.2021.1888411

Miao, M., Zhang, T., & Jiang, B. (2009). Characterisations of kabuli and desi chickpea starches cultivated in China. Food Chemistry, 113(4), 1025–1032. https://doi.org/10.1016/j.foodchem.2008.08.056

Mohamed, M., Legesse, Y., & Abdimahad, K. (2023). Handling, processing and composition of cow milk under two traditional farming systems in kebribeyah district of fafan zone, Somali regional state, Ethiopia. American Journal of Aquaculture and Animal Science, 2, 1–6. https://doi.org/10.54536/ajaas.v2i1.1024

Moreno-Valdespino, C. A., Luna-Vital, D., Camacho-Ruiz, R. M., & Mojica, L. (2020). Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Research International (Ottawa, Ont.), 130, 108905. https://doi.org/10.1016/j.foodres.2019.108905

Mota, J., Direito, R., Rocha, J., Fernandes, J., Sepodes, B., Figueira, M. E., Raymundo, A., Lima, A., & Ferreira, R. B. (2021). Lupinus albus protein components inhibit MMP-2 and MMP-9 gelatinolytic activity in vitro and in vivo. International Journal of Molecular Sciences, 22(24), Article 24. https://doi.org/10.3390/ijms222413286

Mudryj, A. N., Yu, N., & Aukema, H. M. (2014). Nutritional and health benefits of pulses. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, 39(11), 1197–1204. https://doi.org/10.1139/apnm-2013-0557

Munekata, P. E. S., Domínguez, R., Budaraju, S., Roselló-Soto, E., Barba, F. J., Mallikarjunan, K., Roohinejad, S., & Lorenzo, J. M. (2020). Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods, 9(3), 1–16. https://doi.org/10.3390/foods9030288

Ning, S., Mainvil, L.A., Thomson, R.K & McLean, R.M. (2017). Dietary sodium reduction in New Zealand: Influence of the Tick label. Asia Pacific Journal of Clinical Nutrition, 26(6). https://doi.org/10.6133/apjcn.032017.06

Onder, S., Can Karaca, A., Ozcelik, B., Alamri, A. S., Ibrahim, S. A., & Galanakis, C. M. (2023). Exploring the amino-acid composition, secondary structure, and physicochemical and functional properties of chickpea protein isolates. ACS Omega, 8(1), 1486–1495. https://doi.org/10.1021/acsomega.2c06912

Ouazib, M., Moussou, N., Oomah, B., Zaidi, F., & Wanasundara, J. (2015). Effect of processing and germination on nutritional parameters and functional properties of chickpea (Cicer arietinum L.) from Algeria. Journal of Food Legumes, 28(2), 35–42.

Paul, A. A., Kumar, S., Kumar, V., & Sharma, R. (2020). Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Critical Reviews in Food Science and Nutrition, 60(18), 3005–3023. https://doi.org/10.1080/10408398.2019.1674243

Pua, A., Tang, V. C. Y., Goh, R. M. V., Sun, J., Lassabliere, B., & Liu, S. Q. (2022). Ingredients, processing, and fermentation: addressing the organoleptic boundaries of plant-based dairy analogues. Foods, 11(6), Article 6. https://doi.org/10.3390/foods11060875

Reyes-Jurado, F., Soto-Reyes, N., Dávila-Rodríguez, M., Lorenzo-Leal, A. C., Jiménez-Munguía, M. T., Mani-López, E., & López-Malo, A. (2021). Plant-based milk alternatives: types, processes, benefits, and characteristics. Food Reviews International, 39(4), 2320-2351. https://doi.org/10.1080/87559129.2021.1952421

Rincon, L., Braz Assunção Botelho, R., & de Alencar, E. R. (2020). Development of novel plant-based milk based on chickpea and coconut. LWT, 128, 109479. https://doi.org/10.1016/j.lwt.2020.109479

Romulo, A. (2022). Nutritional contents and processing of plant-based milk: A Review. IOP Conference Series: Earth and Environmental Science, 998(1), 012054. https://doi.org/10.1088/1755-1315/998/1/012054

Sasi, M., Kumar, S., Hasan, M., S R, A., Garcia-Gutierrez, E., Kumari, S., Prakash, O., Nain, L., Sachdev, A., & Dahuja, A. (2022). Current trends in the development of soy-based foods containing probiotics and paving the path for soy-synbiotics. Critical Reviews in Food Science and Nutrition, 63(29), 9995-10013. https://doi.org/10.1080/10408398.2022.2078272

Sethi, S., Tyagi, S. K., & Anurag, R. K. (2016). Plant-based milk alternatives an emerging segment of functional beverages: A review. Journal of Food Science and Technology, 53(9), 3408–3423. https://doi.org/10.1007/s13197-016-2328-3

Silva, A. R. A., Silva, M. M. N., & Ribeiro, B. D. (2020). Health issues and technological aspects of plant-based alternative milk. Food Research International, 131(June 2019), 108972. https://doi.org/10.1016/j.foodres.2019.108972

Skrzypczak, K., Jabłońska-Ryś, E., Gustaw, K., Sławińska, A., Waśko, A., Radzki, W., Michalak-Majewska, M., & Gustaw, W. (2019). Reinforcement of the antioxidative properties of chickpea beverages through fermentation carried out by probiotic strain lactobacillus plantarum 299v. Journal of Pure and Applied Microbiology, 13(1), 1–12. https://doi.org/10.22207/JPAM.13.1.01

Smith, K., Mendonca, A., & Jung, S. (2009). Impact of high-pressure processing on microbial shelf-life and protein stability of refrigerated soymilk. Food Microbiology, 26(8), 794–800. https://doi.org/10.1016/j.fm.2009.05.001

Tontul, İ., Kasimoglu, Z., Asik, S., Atbakan, T., & Topuz, A. (2018). Functional properties of chickpea protein isolates dried by refractance window drying. International Journal of Biological Macromolecules, 109, 1253–1259. https://doi.org/10.1016/j.ijbiomac.2017.11.135

Vallath, A., & Shanmugam, A. (2022). Study on model plant based functional beverage emulsion (non-dairy) using ultrasound—A physicochemical and functional characterization. Ultrasonics Sonochemistry, 88, 106070. https://doi.org/10.1016/j.ultsonch.2022.106070

Vanga, S. K., & Raghavan, V. (2018). How well do plant based alternatives fare nutritionally compared to cow’s milk? Journal of Food Science and Technology, 55(1), 10–20. https://doi.org/10.1007/s13197-017-2915-y

Wang, S., Chelikani, V., & Serventi, L. (2018). Evaluation of chickpea as alternative to soy in plant-based beverages, fresh and fermented. LWT, 97, 570–572. https://doi.org/10.1016/j.lwt.2018.07.067

Wattanayon, W., Udompijitkul, P., & Kamonpatana, P. (2021). Ohmic heating of a solid-liquid food mixture in an electrically conductive package. Journal of Food Engineering, 289, 110180. https://doi.org/10.1016/j.jfoodeng.2020.110180

Withana-Gamage, T. S., Wanasundara, J. P., Pietrasik, Z., & Shand, P. J. (2011). Physicochemical, thermal and functional characterisation of protein isolates from Kabuli and Desi chickpea (Cicer arietinum L.): A comparative study with soy (Glycine max) and pea (Pisum sativum L.). Journal of the Science of Food and Agriculture, 91(6), 1022–1031. https://doi.org/10.1002/jsfa.4277

Yadav, S. S., Redden, R.J., Chen, W., & Sharma, B. (Eds.). (2007). Chickpea breeding and management. CABI. https://www.cabidigitallibrary.org/doi/book/10.1079/9781845932138.000

Zaheer, K., & Humayoun Akhtar, M. (2017). An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Critical Reviews in Food Science and Nutrition, 57(6), 1280–1293. https://doi.org/10.1080/10408398.2014.989958

Zamora, A., & Guamis, B. (2015). Opportunities for Ultra-High-Pressure Homogenisation (UHPH) for the food industry. Food Engineering Reviews, 7(2), 130–142. https://doi.org/10.1007/s12393-014-9097-4

Zhang, X., Liu, S., Xie, B., & Sun, Z. (2022). An approach to processing more bioavailable chickpea milk by combining enzymolysis and probiotics fermentation. Journal of Food Quality, 2022, 17–21. https://doi.org/10.1155/2022/1665524

Zhang, X., Zhang, S., Xie, B., & Sun, Z. (2021). Influence of lactic acid bacteria fermentation on physicochemical properties and antioxidant activity of chickpea yam milk. Journal of Food Quality, 2021. https://doi.org/10.1155/2021/5523356

Zia-Ul-Haq, M., Iqbal, S., Ahmad, S., Imran, M., Niaz, A., & Bhanger, M. I. (2007). Nutritional and compositional study of Desi chickpea (Cicer arietinum L.) cultivars grown in Punjab, Pakistan. Food Chemistry, 105(4), 1357–1363. https://doi.org/10.1016/j.foodchem.2007.05.004

Published
2025/01/16
Section
Review article