STATE-OF-THE-ART MYCOTOXIN ANALYSIS: INSIGHTS FROM LC/MS-MS METHOD
Sažetak
Abstract: Mycotoxins are secondary metabolites produced by fungi, known for their chemical and thermal stability, which makes them resistant to common food and feed processing methods. These toxins can contaminate food and feed, and cause a range of toxic effects upon ingestion, including mutagenic, teratogenic, carcinogenic, immunotoxic, neurotoxic, hepatotoxic, and dermatotoxic effects. In recent years, liquid chromatography coupled with tandem mass spectrometry has been increasingly utilized for mycotoxin determination due to its exceptional sensitivity and specificity. Recent literature highlights the use of various liquid chromatography systems for mycotoxin analysis, typically integrated with octadecylsilane columns, and employing gradient elution with mobile phases consisting of water, organic solvents, and appropriate optional modifiers. The studies reviewed predominantly utilized electrospray ionization in positive and negative mode, and mass spectrometric analysis in multiple reaction monitoring mode to ensure precise multi mycotoxin quantification. Specific configurations of liquid chromatography systems, such as ultra high performance liquid chromatography with different column types, and mass spectrometers, including triple quadrupole and QTrap tandem mass spectrometry systems, were mainly used. These advancements underscore the ongoing refinement and standardization of methodologies for accurate and efficient mycotoxin analysis in food matrices.
Sažetak: Mikotoksini su sekundarni metaboliti plesni i poznati su po svojoj hemijskoj i termičkoj stabilnosti, što ih čini otpornim na uobičajene metode obrade hrane i hrane za životinje. Mogu kontaminirati hranu i hranu za životinje, izazivajući niz toksičnih efekata prilikom unosa u organizam, uključujući mutagene, teratogene, kancerogene, imunotoksične, neurotoksicne, hepatotoksične i dermatotoksične efekte. Tečna hromatografija u kombinaciji sa tandem masenom spektrometrijom (LC-MS/MS) postala je dominantna analitička metoda za detekciju mikotoksina zbog svoje izuzetne osetljivosti i specifičnosti. Savremena literatura ukazuje na upotrebu različitih tečno-hromatografskih sistema, obično integrisanih sa oktadecilsilan kolonama, uz primenu gradijentnog načina eluiranja sa mobilnim fazama koje se najčešće sastoje od vode, organskih rastvarača i odgovarajućih modifikatora. U pregledanim studijama pretežno je korišćena elektrosprej jonizacija u pozitivnom i negativnom režimu i maseno-spektrometrijska analiza u režimu višestruke reakcije praćenja kako bi se obezbedila precizna kvantifikacija. Specifične konfiguracije tečno-hromatografskih sistema, kao što su ultra visokopritisna tečna hromatografija sa različitim vrstama kolona i masenim spektrometrima, uključujući trostruke kvadrupole i QTrap tandem masene sisteme, najčešće su korišćene. Ova dostignuća naglašavaju kontinuirani napredak i standardizaciju metodologija za tačnu i efikasnu analizu mikotoksina u prehrambenim uzorcima.
Reference
Abreu, D. C. P., da Silva Oliveira, F. A., Vpargas, E. A., Madureira, F. D., Magalhães, E. J., Da Silva, L. P., & Saczk, A. A. (2020). Methodology development based on “dilute and shoot” and QuEChERS for determination of multiple mycotoxins in cocoa by LC-MS/MS. Analytical and bioanalytical chemistry, 412, 1757-1767. https://doi.org/10.1007/s00216-020-02390-5
Agriopoulou, S., Stamatelopoulou, E., Varzakas, T. (2020). Advances in occurrence, importance, and mycotoxin control strategies: prevention and detoxification in foods. Foods, 9(2):137. https://doi.org/10.3390/foods9020137
Akiyama, H., Goda, Y., Tanaka, T., & Toyoda, M. (2001). Determination of aflatoxins B1, B2, G1 and G2 in spices using a multifunctional column clean-up. Journal of Chromatography A, 932(1-2), 153-157. https://doi.org/10.1016/S0021-9673(01)01211-0
Alshannaq, A., & Yu, J. H. (2017). Occurrence, toxicity, and analysis of major mycotoxins in food. International journal of environmental research and public health, 14(6), 632. https://doi.org/10.3390/ijerph14060632
Bian, Y., Zhang, Y., Zhou, Y., Wei, B., & Feng, X. (2023). Recent insights into sample pretreatment methods for mycotoxins in different food matrices: A critical review on novel materials. Toxins, 15(3), 215. https://doi.org/10.3390/toxins15030215
Bills, G. F., & Gloer, J. B. (2016). Biologically active secondary metabolites from the fungi. Microbiology spectrum, 4(6), 10-1128. https://doi.org/10.1128/microbiolspec.funk-0009-2016
Boshra, M. H., El-Housseiny, G. S., Farag, M. M., & Aboshanab, K. M. (2024). Innovative approaches for mycotoxin detection in various food categories. AMB Express, 14(1), 7. https://doi.org/10.1186/s13568-024-01662-y
Campagnollo, F. B., Ganev, K. C., Khaneghah, A. M., Portela, J. B., Cruz, A. G., Granato, D., Corassin, C.H., Oliveira, C.A.F. & Sant'Ana, A. S. (2016). The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1: A review. Food control, 68, 310-329. https://doi.org/10.1016/j.foodcont.2016.04.007
Castilla-Fernández, D., Rocío-Bautista, P., Moreno-González, D., García-Reyes, J. F., & Molina-Díaz, A. (2022). Dilute-and-shoot versus clean-up approaches: A comprehensive evaluation for the determination of mycotoxins in nuts by UHPLC-MS/MS. Lebensmittel-Wissenschaft & Technologie, 169, 113976. https://doi.org/10.1016/j.lwt.2022.113976
Casu, A., Camardo Leggieri, M., Toscano, P., & Battilani, P. (2024). Changing climate, shifting mycotoxins: A comprehensive review of climate change impact on mycotoxin contamination. Comprehensive Reviews in Food Science and Food Safety, 23(2), e13323. https://doi.org/10.1111/1541-4337.13323
Clarke, C. J., Tu, W. C., Levers, O., Brohl, A., & Hallett, J. P. (2018). Green and sustainable solvents in chemical processes. Chemical reviews, 118(2), 747-800. https://doi.org/10.1021/acs.chemrev.7b00571
De Colli, L., Elliott, C., Finnan, J., Grant, J., Arendt, E. K., McCormick, S. P., & Danaher, M. (2020). Determination of 42 mycotoxins in oats using a mechanically assisted QuEChERS sample preparation and UHPLC-MS/MS detection. Journal of Chromatography B, 1150, 122187. https://doi.org/10.1016/j.jchromb.2020.122187
De Girolamo, A., Lippolis, V., & Pascale, M. (2022). Overview of recent liquid chromatography mass spectrometry-based methods for natural toxins detection in food products. Toxins, 14(5), 328. https://doi.org/10.3390/toxins14050328
de Toffoli, A. L., Maciel, E. V. S., Fumes, B. H., & Lanças, F. M. (2018). The role of graphene‐based sorbents in modern sample preparation techniques. Journal of separation science, 41(1), 288-302. https://doi.org/10.1002/jssc.201700870
Dwamena, A. K. (2019). Recent advances in hydrophobic deep eutectic solvents for extraction. Separations, 6(1), 9. https://doi.org/10.3390/separations6010009
Elik, A., Unal, Y., & Altunay, N. (2019). Development of a chemometric-assisted deep eutectic solvent-based microextraction procedure for extraction of caffeine in foods and beverages. Food Additives & Contaminants: Part A, 36(8), 1139-1150. https://doi.org/10.1080/19440049.2019.1619941
Elkenany, R.M. & Awad A (2020) Types of Mycotoxins and diferent approaches used for their detection in foodstufs. Mansoura Veterinary Medical Journal, 21(4):25–32. DOI:10.35943/mvmj.2021.161191
Er Demirhan, B., & Demirhan, B. (2021). The investigation of mycotoxins and Enterobacteriaceae of cereal-based baby foods marketed in Turkey. Foods, 10(12), 3040. https://doi.org/10.3390/foods10123040
Escrivá, L., Oueslati, S., Font, G., & Manyes, L. (2017). Alternaria mycotoxins in food and feed: An overview. Journal of Food Quality, 2017(1), 1569748. https://doi.org/10.1155/2017/1569748
Eskola, M., Kos, G., Elliott, C. T., Hajšlová, J., Mayar, S., & Krska, R. (2020). Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’of 25%. Critical reviews in food science and nutrition, 60(16), 2773-2789. https://doi.org/10.1080/10408398.2019.1658570
European Commission. (2002a). Directive 2002/32/EC of 7 May 2002 on undesirable substances in animal feed - Council statement. The Official Journal of the European Union, L 140, 30/05/2002, pp 10-22. Available online: http://data.europa.eu/eli/dir/2002/32/oj (accessed on 23 September 2024)
European Commission. (2002b). Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. The Official Journal of the European Union, 221, 8-36. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32002D0657 (accessed on 15 August 2024)
European Commission. (2006). Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2, and fumonisins in products intended for animal feeding. The Official Journal of the European Union, 229, 0007–0009. Available online: http://data.europa.eu/eli/reco/2006/576/oj (accessed on 23 September 2024)
European Commission. (2021a). Commission Regulation (EU) No 2021/808 of 22 March 2021 on the performance criteria for analytical methods for official control of levels of mycotoxins in foodstuffs. The Official Journal of the European Union, L206, 29-44. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R0808 (accessed on 15 August 2024)
European Commission. (2021b). Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. SANTE/11312/2021. Implemented by 01/01/2024. Safe Food Chain Pesticide Biocides, 1–57. Available online: https://food.ec.europa.eu/system/files/2023-11/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf (accessed on 15 August 2024)
European Commission. (2023a). Commission Regulation (EU) No 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. The Official Journal of the European Union, 119, 103-157. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj (accessed on 23 September 2024)
European Commission. (2023b). Commission Regulation (EC), No. 2023/2782 of 14 December 2023 laying down the methods of sampling and analysis for the control of the levels of mycotoxins in food and repealing EC Regulation No. 401/2006, The Official Journal of the European Union, 1–44. Available online: https://data.europa.eu/eli/reg_impl/2023/2782/oj (accessed on 15 August 2024)
FAOSTAT, Food and Agriculture Organization of the United Nations. 2020. Available online: https://www.fao.org/faostat/en/ (accessed on 10 August 2024).
González-Jartín, J. M., Alfonso, A., Rodríguez, I., Sainz, M. J., Vieytes, M. R., & Botana, L. M. (2019). A QuEChERS based extraction procedure coupled to UPLC-MS/MS detection for mycotoxins analysis in beer. Food chemistry, 275, 703-710. https://doi.org/10.1016/j.foodchem.2018.09.162
González-Jartín, J. M., Rodriguez-Canas, I., Alfonso, A., Sainz, M. J., Vieytes, M. R., Gomes, A., Ramos I. & Botana, L. M. (2021). Multianalyte method for the determination of regulated, emerging and modified mycotoxins in milk: QuEChERS extraction followed by UHPLC–MS/MS analysis. Food chemistry, 356, 129647. https://doi.org/10.1016/j.foodchem.2021.129647
Goud, K. Y., Kailasa, S. K., Kumar, V., Tsang, Y. F., Gobi, K. V., & Kim, K. H. (2018). Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosensors and Bioelectronics, 121, 205-222. https://doi.org/10.1016/j.bios.2018.08.029
Greeff-Laubscher, M. R., Beukes, I., Marais, G. J., & Jacobs, K. (2020). Mycotoxin production by three different toxigenic fungi genera on formulated abalone feed and the effect of an aquatic environment on fumonisins. Mycology, 11(2), 105-117. https://doi.org/10.1080/21501203.2019.1604575
Greer, B., Chevallier, O., Quinn, B., Botana, L. M., & Elliott, C. T. (2021). Redefining dilute and shoot: The evolution of the technique and its application in the analysis of foods and biological matrices by liquid chromatography mass spectrometry. Trends in Analytical Chemistry, 141, 116284. https://doi.org/10.1016/j.trac.2021.116284
He, T., Zhou, T., Wan, Y., & Tan, T. (2020). A simple strategy based on deep eutectic solvent for determination of aflatoxins in rice samples. Food Analytical Methods, 13, 542-550. https://doi.org/10.1007/s12161-019-01665-7
Iqbal, S. Z. (2021). Mycotoxins in food, recent development in food analysis and future challenges; a review. Current Opinion in Food Science, 42, 237-247. https://doi.org/10.1016/j.cofs.2021.07.003
Jeliński, T., Przybyłek, M., & Cysewski, P. (2019). Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharmaceutical Research, 36, 1-10. https://doi.org/10.1007/s11095-019-2643-2
Kagot, V., Okoth, S., De Boevre, M., & De Saeger, S. (2019). Biocontrol of Aspergillus and Fusarium mycotoxins in Africa: benefits and limitations. Toxins, 11(2), 109. https://doi.org/10.3390/toxins11020109
Khan, R., Anwar, F., & Ghazali, F. M. (2024). A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e28361
Khaneghah, A. M., Martins, L. M., von Hertwig, A. M., Bertoldo, R., & Sant’Ana, A. S. (2018). Deoxynivalenol and its masked forms: Characteristics, incidence, control and fate during wheat and wheat based products processing-A review. Trends in Food Science & Technology, 71, 13-24. https://doi.org/10.1016/j.tifs.2017.10.012
Khaneghah, A. M., Moosavi, M. H., Oliveira, C. A., Vanin, F., & Sant’Ana, A. S. (2020). Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: an overview. Food and Chemical Toxicology, 143, 111557. https://doi.org/10.1016/j.fct.2020.111557
Köppen, R., Koch, M., Siegel, D., Merkel, S., Maul, R., & Nehls, I. (2010). Determination of mycotoxins in foods: current state of analytical methods and limitations. Applied microbiology and biotechnology, 86, 1595-1612. https://doi.org/10.1007/s00253 010-2535-1.
Kos, J., Anić, M., Radić, B., Zadravec, M., Janić Hajnal, E., & Pleadin, J. (2023). Climate change—A global threat resulting in increasing mycotoxin occurrence. Foods, 12(14), 2704. https://doi.org/10.3390/foods12142704
Kos, J., Radić, B., Lešić, T., Anić, M., Jovanov, P., Šarić, B., & Pleadin, J. (2024). Climate Change and Mycotoxins Trends in Serbia and Croatia: A 15-Year Review. Foods, 13(9), 1391. https://doi.org/10.3390/foods13091391
Kos, J., Janić Hajnal, E., Malachová, A., Krska, R., Sulyok, M. (2022). The natural occurrence of Penicillium spp. metabolites in maize kernels originating from Serbia. Food and Feed Research, 49(2), 195-207. https://doi.org/10.5937/ffr0-39606
Kovalsky, P., Kos, G., Nährer, K., Schwab, C., Jenkins, T., Schatzmayr, G., Sulyok M. & Krska, R. (2016). Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize—An extensive survey. Toxins, 8(12), 363. https://doi.org/10.3390/toxins8120363
Laouni, C., Lara, F. J., Messai, A., Redouane-Salah, S., Hernández-Mesa, M., Gámiz-Gracia, L., & García-Campaña, A. M. (2024). Emerging mycotoxin occurrence in chicken feed and eggs from Algeria. Mycotoxin Research, 1-10. https://doi.org/10.1007/s12550-024-00537-2
Lattanzio, V. M., Solfrizzo, M., Powers, S., & Visconti, A. (2007). Simultaneous determination of aflatoxins, ochratoxin A and Fusarium toxins in maize by liquid chromatography/tandem mass spectrometry after multitoxin immunoaffinity cleanup. Rapid Communications in Mass Spectrometry, 3253–3261. https://doi.org/10.1002/rcm.3210
Leite, M., Freitas, A., Barbosa, J., & Ramos, F. (2023). Comprehensive assessment of different extraction methodologies for optimization and validation of an analytical multi-method for determination of emerging and regulated mycotoxins in maize by UHPLC-MS/MS. Food Chemistry Advances, 2, 100145. https://doi.org/10.1016/j.focha.2022.100145
Leite, M., Freitas, A., Silva, A. S., Barbosa, J., & Ramos, F. (2020). Maize (Zea mays L.) and mycotoxins: A review on optimization and validation of analytical methods by liquid chromatography coupled to mass spectrometry. Trends in Food Science & Technology, 99, 542-565. https://doi.org/10.1016/j.tifs.2020.03.023
Liang, S. H., York, J. L., Konschnik, J. D., Majer, H., & Steimling, J. A. (2023). Simultaneous Determination of Alternaria Toxins, Ergot Alkaloid Epimers, and Other Major Mycotoxins in Various Food Matrixes by LC–MS/MS. Journal of AOAC International, 106(2), 333-340. https://doi.org/10.1093/jaoacint/qsac138
Makoś, P., Słupek, E., & Gębicki, J. (2020). Hydrophobic deep eutectic solvents in microextraction techniques–A review. Microchemical journal, 152, 104384. https://doi.org/10.1016/j.microc.2019.104384
Malachová, A., Stránská, M., Václavíková, M., Elliott, C. T., Black, C., Meneely, J., Hajšlová J., Ezekiel C.N., Schuhmacher R., & Krska, R. (2018). Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Analytical and Bioanalytical Chemistry, 410, 801-825. https://doi.org/10.1007/s00216-017-0750-7
Malachová, A., Sulyok, M., Beltrán, E., Berthiller, F., & Krska, R. (2014). Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. Journal of Chromatography A, 1362, 145-156. https://doi.org/10.1016/j.chroma.2014.08.037
Matumba, L., Namaumbo, S., Ngoma, T., Meleke, N., De Boevre, M., Logrieco, A. F., & De Saeger, S. (2021). Five keys to prevention and control of mycotoxins in grains: A proposal. Global Food Security, 30, 100562. https://doi.org/10.1016/j.gfs.2021.100562
Mazzola, P. G., Lopes, A. M., Hasmann, F. A., Jozala, A. F., Penna, T. C., Magalhaes, P. O., Rangel‐Yagui C.O. & Pessoa Jr, A. (2008). Liquid–liquid extraction of biomolecules: an overview and update of the main techniques. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(2), 143-157. https://doi.org/10.1002/jctb.1794
Mbisana, M., Rebagamang, T., Mogopodi, D., & Chibua, I. (2023). Development and validation of a QuEChERS-LC-MS/MS method for determination of multiple mycotoxins in maize and sorghum from Botswana. Frontiers in Fungal Biology, 4, 1141427. https://doi.org/10.3389/ffunb.2023.1141427
Mejía‐Carmona, K., Maciel, E. V. S., & Lanças, F. M. (2020). Miniaturized liquid chromatography applied to the analysis of residues and contaminants in food: A review. Electrophoresis, 41(20), 1680-1693. https://doi.org/10.1002/elps.202000019
Munkvold, G. P., Arias, S., Taschl, I., & Gruber-Dorninger, C. (2019). Mycotoxins in corn: Occurrence, impacts, and management. Corn. AACC International Press, (pp. 235-287). https://doi.org/10.1016/B978-0-12-811971-6.00009-7
Ning, X., Wang, L., Wang, J. S., Ji, J., Jin, S., Sun, J., Ye, Y., Mei, S., Zhang, Y., Cao, J., & Sun, X. (2024). High-Coverage UHPLC-MS/MS Analysis of 67 Mycotoxins in Plasma for Male Infertility Exposure Studies. Toxics, 12(6), 395. https://doi.org/10.3390/toxics12060395
Pascari, X., Ramos, A. J., Marín, S., & Sanchís, V. (2018). Mycotoxins and beer. Impact of beer production process on mycotoxin contamination. A review. Food Research International, 103, 121-129. https://doi.org/10.1016/j.foodres.2017.07.038
Pereira, V. L., Fernandes, J. O., & Cunha, S. C. (2014). Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends in Food Science & Technology, 36(2), 96-136. https://doi.org/10.1016/j.tifs.2014.01.005
Picardo, M., Filatova, D., Nunez, O., & Farré, M. (2019). Recent advances in the detection of natural toxins in freshwater environments. Trends in Analytical Chemistry, 112, 75-86. https://doi.org/10.1016/j.trac.2018.12.017
Pradanas-González, F., Álvarez-Rivera, G., Benito-Peña, E., Navarro-Villoslada, F., Cifuentes, A., Herrero, M., & Moreno-Bondi, M. C. (2021). Mycotoxin extraction from edible insects with natural deep eutectic solvents: a green alternative to conventional methods. Journal of Chromatography A, 1648, 462180. https://doi.org/10.1016/j.chroma.2021.462180
Radić, B. Đ., Kos, J. J., Tanackov, S. D. K., Hajnal, E. P. J., & Mandić, A. I. (2019). Occurrence of moniliformin in cereals. Food and Feed research, 46(2), 149-160. http://dx.doi.org/10.5937/FFR1902149R
Rausch, A. K., Brockmeyer, R., & Schwerdtle, T. (2021). Development and validation of a liquid chromatography tandem mass spectrometry multi-method for the determination of 41 free and modified mycotoxins in beer. Food chemistry, 338, 127801. https://doi.org/10.1016/j.foodchem.2020.127801
Rahmani, A., Jinap, S., & Soleimany, F. (2009). Qualitative and quantitative analysis of mycotoxins. Comprehensive reviews in food science and food safety, 8(3), 202-251. https://doi.org/10.1111/j.1541-4337.2009.00079.x
Ridgway, K., Smith, R.M., & Lalljie, S.P. (2012). Sample preparation for food contaminant analysis. Chemistry, Molecular Sciences and Chemical Engineering, 25:1–8. https://doi.org/10.1016/B978-0-12-381373-2.00115-0
Rodríguez-Cañás, I., González-Jartín, J. M., Alvariño, R., Alfonso, A., Vieytes, M. R., & Botana, L. M. (2023). Detection of mycotoxins in cheese using an optimized analytical method based on a QuEChERS extraction and UHPLC-MS/MS quantification. Food Chemistry, 408, 135182. https://doi.org/10.1016/j.foodchem.2022.135182
Salvatore, M. M., Andolfi, A., & Nicoletti, R. (2023). Mycotoxin contamination in hazelnut: current status, analytical strategies, and future prospects. Toxins, 15(2), 99. https://doi.org/10.3390/toxins15020099.
Sartori, A. V., de Moraes, M. H. P., dos Santos, R. P., Souza, Y. P., & da Nóbrega, A. W. (2017). Determination of mycotoxins in cereal-based porridge destined for infant consumption by ultra-high performance liquid chromatography-tandem mass spectrometry. Food analytical methods, 10, 4049-4061. https://doi.org/10.1007/s12161-017-0965-4
Singh, J., & Mehta, A. (2020). Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food science & nutrition, 8(5), 2183-2204. https://doi.org/10.1002/fsn3.1474
Shephard, G. S. (2008). Determination of mycotoxins in human foods. Chemical Society Reviews, 37(11), 2468-2477. https://doi.org/10.1039/B713084H
Shephard, G. S. (2016). Current status of mycotoxin analysis: a critical review. Journal of AOAC International, 99(4), 842-848. https://doi.org/10.5740/jaoacint.16-0111
Smaoui, S., Ben Braïek, O., & Ben Hlima, H. (2020). Mycotoxins Analysis in Cereals and Related Foodstuffs by Liquid Chromatography‐Tandem Mass Spectrometry Techniques. Journal of Food Quality, 2020(1), 8888117. https://doi.org/10.1155/2020/8888117
Spanjer, M. C., Scholten, J. M., Kastrup, S., Jörissen, U., Schatzki, T. F., & Toyofuku, N. (2006). Sample comminution for mycotoxin analysis: dry milling or slurry mixing? Food Additives & Contaminants, 23(1):73–83. https://doi.org/10.1080/02652030500260439
Sulyok, M., Berthiller, F., Krska, R., & Schuhmacher, R. (2006). Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the Minute Research in Mass Spectrometry, 20(18), 2649-2659. https://doi.org/10.1002/rcm.2640
Sulyok, M., Stadler, D., Steiner, D., & Krska, R. (2020). Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of> 500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Analytical and bioanalytical chemistry, 412, 2607-2620. https://doi.org/10.1007/s00216-020-02489-9
Sulyok, M., Suman, M., & Krska, R. (2024). Quantification of 700 mycotoxins and other secondary metabolites of fungi and plants in grain products. npj Science of Food, 8(1), 49. https://doi.org/10.1038/s41538-024-00294-7
Technical Committee (2010). CEN/TR 16059: Food analysis-performance criteria for single laboratory validated methods of analysis for the determination of mycotoxins. European Committee for Standardization, Management Centre. Brussels, Belgium. pp. 1–14. https://www.intertekinform.com/preview/98697665123.pdf?sku=874908_saig_nsai_nsai_2079941,&srsltid=AfmBOoq3w2137qDO3FFdvH5YHFcJ8Bp6dRbGC0vYf6GBz_VpwLh8HG_h
Tittlemier, S. A., Brunkhorst, J., Cramer, B., De Rosa, M. C., Lattanzio, V. M. T., Malone, R., Maragos, C., Stranska, M., & Sumarah, M. W. (2021). Developments in mycotoxin analysis: an update for 2019-2020. World Mycotoxin Journal, 14(1), 3-26. https://doi.org/10.3920/WMJ2020.2664
Turner, N. W., Subrahmanyam, S., & Piletsky, S. A. (2009). Analytical methods for determination of mycotoxins: a review. Analytica chimica acta, 632(2), 168-180. https://doi.org/10.1016/j.aca.2008.11.010
Uka, V., Moore, G. G., Arroyo-Manzanares, N., Nebija, D., De Saeger, S., & Diana Di Mavungu, J. (2019). Secondary metabolite dereplication and phylogenetic analysis identify various emerging mycotoxins and reveal the high intra-species diversity in Aspergillus flavus. Frontiers in Microbiology, 10, 667. https://doi.org/10.3389/fmicb.2019.00667
Vidal, A., Meng-Reiterer, J., Kunz-Vekiru, E., De Saeger, S., & Schuhmacher, R. (2018). Development and validation of an LC-MS/MS method for the simultaneous determination of 19 mycotoxins in pig feed. Mycotoxin Research, 34(3), 207-220. https://doi.org/10.1007/s12550-018-0319-5
Weaver, A. C., Adams, N., & Yiannikouris, A. (2020). Invited Review: Use of technology to assess and monitor multimycotoxin and emerging mycotoxin challenges in feedstuffs. Applied Animal Science, 36(1), 19-25. https://doi.org/10.15232/aas.2019-01898
Whitaker, T. B. (2003) Detecting mycotoxins in agricultural commodities. Molecular Biotechnology, 23:61–71. https://doi.org/10.1385/MB:23:1:61
Whitaker, T. B. (2006). Sampling foods for mycotoxins. Food additives and contaminants, 23(1), 50-61. https://doi.org/10.1080/02652030500241587
Wu, Z., Sun, D. W., Pu, H., & Wei, Q. (2023). A novel fluorescence biosensor based on CRISPR/Cas12a integrated MXenes for detecting Aflatoxin B1. Talanta, 252, 123773. https://doi.org/10.1016/j.talanta.2022.123773
Xie, L., Chen, M., & Ying, Y. (2016). Development of methods for determination of aflatoxins. Critical reviews in food science and nutrition, 56(16), 2642-2664. https://doi.org/10.1080/10408398.2014.907234
Zhang, K., Flannery, B., & Zhang, L. (2024). Challenges and Future State for Mycotoxin Analysis: A Review From a Regulatory Perspective. Journal of Agricultural and Food Chemistry, 72(15), 8380-8388. https://doi.org/10.1021/acs.jafc.4c01746
Zhgun, A. A. (2023). Fungal BGCs for production of secondary metabolites: main types, central roles in strain improvement, and regulation according to the piano principle. International Journal of Molecular Sciences, 24(13), 11184. https://doi.org/10.3390/ijms241311184
Sva prava zadržana (c) 2025 The Authors

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
