MICROENCAPSULATION TECHNIQUES: A COMPREHENSIVE REVIEW
Abstract
Microencapsulation technology consists of wrapping protective layers around bioactive compounds in the form of microcapsules varying in size ranges between 1-1000 µm. This approach encapsulates heat-sensitive ingredients, shielding them from temperature shifts, pH changes, and light, ensuring their controlled release for a variety of pharmaceutical and food uses. This technology can enhance the bioavailability, stability, and organoleptic characteristics of functional compounds such as flavonoids, carotenoids, vitamins and lipophilic nutrients (e.g., PUFA from fish oil). This review focuses on a complex review of microencapsulation technologies, including coacervation, spray drying, emulsification, fluid bed coating, freeze-drying, complex coacervation and solvent evaporation extrusion-based encapsulation and electrospinning-based encapsulation. All methods differed in the particle size, hydrophobicity and solubility, as well as the porosity of the microcapsules. Selecting a suitable technique depends on the properties of core materials and wall materials. Furthermore, the paper explains the influence of encapsulation methods on product functionality, flavor masking, and the enhancement of physical and thermal properties, emphasizing their significance in the evolving food industry.
References
Abd El-Kader, A., & Abu Hashish, H. (2020). Encapsulation techniques of food bioproduct. Egyptian Journal of Chemistry, 63(5), 1881-1909. https://journals.ekb.eg/article_53684.html
Ach, D., Briançon, S., Broze, G., Puel, F., Rivoire, A., Galvan, J. M., & Chevalier, Y. (2015). Formation of microcapsules by complex coacervation. The Canadian Journal of Chemical Engineering, 93(2), 183-191. https://onlinelibrary.wiley.com/doi/abs/10.1002/cjce.22086
Afshari, K., Javanmard D.M., Ramezan, Y., Bassiri, A., & Ahmadi Chenarbon, H. (2023). Physicochemical and control releasing properties of date pit (Phoenix dactylifera L.) phenolic compounds microencapsulated through fluidized‐bed method. Food Science & Nutrition, 11(3), 1367-1382. https://doi.org/10.1002/fsn3.3157
Aguilera-Chávez, S. L., Gallardo-Velázquez, T., Meza-Márquez, O. G., & Osorio-Revilla, G. (2022). Spray drying and spout-fluid bed drying microencapsulation of Mexican plum fruit (Spondias purpurea L.) extract and its effect on in vitro gastrointestinal bioaccessibility. Applied Sciences, 12(4), 2213. https://doi.org/10.3390/app12042213
Aktaş, H., Napiórkowska, A., Szpicer, A., Custodio-Mendoza, J. A., Paraskevopoulou, A., Pavlidou, E., & Kurek, M. A. (2024). Microencapsulation of green tea polyphenols: Utilizing oat oil and starch-based double emulsions for improved delivery. International Journal of Biological Macromolecules, 274, 133295. https://doi.org/10.1016/j.ijbiomac.2024.133295
Alvim, I. D., Souza, F. D. S. D., Koury, I. P., Jurt, T., & Dantas, F. B. H. (2013). Use of the spray chilling method to deliver hydrophobic components: physical characterization of microparticles. Food Science and Technology, 33, 34-39. https://doi.org/10.1590/S0101-20612013005000001
Alvim, I. D., Stein, M. A., Koury, I. P., Dantas, F. B. H., & Cruz, C. L. D. C. V. (2016). Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT, 65, 689-694. https://doi.org/10.1016/j.foodres.2014.09.032
Antigo, J. L. D., Bergamasco, R. D. C., & Madrona, G. S. (2017). Effect of pH on the stability of red beet extract (Beta vulgaris L.) microcapsules produced by spray drying or freeze drying. Food Science and Technology, 38, 72-77. https://doi.org/10.1590/1678-457x.2017.0031
Areekal, N. N., Chakkaravarthi, A., & Debnath, S. (2024). Effect of microencapsulation on physical properties of powder developed from blended oils rich in PUFA. Journal of Food Science and Technology, 61(12), 2275-2286. https://doi.org/10.1007/s13197-024-05992-4
Augustin, M. A., Sanguansri, L., Margetts, C., & Young, B. J. F. A. (2001). Microencapsulating food ingredients. Food Australia, 53(6), 220-223. https://search.informit.org/doi/abs/10.3316/csi.cs027622#
Baltrusch, K. L., Torres, M. D., Domínguez, H., & Flórez-Fernández, N. (2022). Spray-drying microencapsulation of tea extracts using green starch, alginate or carrageenan as carrier materials. International Journal of Biological Macromolecules, 203, 417-429. https://doi.org/10.1016/j.ijbiomac.2022.01.123
Bastos, L. P. H., Vicente, J., dos Santos, C. H. C., de Carvalho, M. G., & Garcia-Rojas, E. E. (2020). Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids, 102, 105605. https://doi.org/10.1016/j.foodhyd.2019.105605
Beldarrain-Iznaga, T., Villalobos-Carvajal, R., Leiva-Vega, J., & Armesto, E. S. (2020). Influence of multilayer microencapsulation on the viability of Lactobacillus casei using a combined double emulsion and ionic gelation approach. Food and Bioproducts Processing, 124, 57-71. https://doi.org/10.1016/j.fbp.2020.08.009
Bennacef, C., Desobry-Banon, S., Probst, L., & Desobry, S. (2022). Optimization of core-shell capsules properties (olive oil/alginate) obtained by dripping coextrusion process. LWT, 167, 113879. https://doi.org/10.1016/j.lwt.2022.113879
Bettou, M., Gali, L., & Oukil, N. (2025). Microencapsulation of turmeric extract by complex coacervation: in vitro, gastrointestinal digestion and stability study during kefir storage. Food Measure, 19(2), 900-911. https://doi.org/10.1007/s11694-024-03011-w
Bui, L. (2013). Fluidised bed microencapsulation of ascorbic acid: Effectiveness of protection under simulated tropical storage conditions Technical report. DSTO-TR-2789. Fishermans Bend,Victoria, Australia: Human Protection and Performance Division, DSTO Defence Science and Technology Organisation. https://apps.dtic.mil/sti/tr/pdf/ADA600975.pdf
Carmona, P. A., Tonon, R. V., da Cunha, R. L., & Hubinger, M. D. (2013). Influence of emulsion properties on the microencapsulation of orange essential oil by spray drying. Journal of Colloid Science and Biotechnology, 2(2), 130-139. https://doi.org/10.1166/jcsb.2013.1042
Castelo, R. M., Da Silva, L. C., De Almeida, H. V., Cheng, H. N., Biswas, A., Magalhães, H. C. R., & Furtado, R. F. (2024). Polymeric microencapsulation of pequi oil: preparation and characterization. Food Science and Technology (Campinas), 44, e00208. https://doi.org/10.5327/fst.00208
Cevik, K., Yalcin, H. & Konca, Y. (2024). Elucidating the influence of coating materials in the microencapsulation process of hempseed oil via spray drying: A comprehensive analysis of physicochemical attributes, oxidation stability, and thermal properties. Food Biophysics, 19, 795–805. https://doi.org/10.1007/s11483-024-09859-1
Chasquibol, N., Sotelo, A., Tapia, M., Alarcón, R., Goycoolea, F., & Perez-Camino, M. D. C. (2024). Co-Microencapsulation of Cushuro (Nostoc sphaericum) polysaccharide with Sacha Inchi oil (Plukenetia huayllabambana) and natural antioxidant extracts. Antioxidants, 13(6), 680. https://doi.org/10.3390/antiox13060680
Chew, S. C., & Nyam, K. L. (2016). Microencapsulation of kenaf seed oil by co-extrusion technology. Journal of Food Engineering, 175, 43-50. https://doi.org/10.1016/j.jfoodeng.2015.12.002
Chezanoglou, E., & Goula, A. M. (2021). Co-crystallization in sucrose: A promising method for encapsulation of food bioactive components. Trends in Food Science & Technology, 114, 262-274. https://doi.org/10.1016/j.tifs.2021.05.036
Choudhury, N., Meghwal, M., & Das, K. (2021). Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers, 2(4), 426-442. https://doi.org/10.1002/fft2.94
Costa, A. M., Moretti, L. K., Simões, G., Silva, K. A., Calado, V., Tonon, R. V., & Torres, A. G. (2020). Microencapsulation
of pomegranate (Punica granatum L.) seed oil by complex coacervation: Development of a potential functional ingredient for food application. LWT, 131, 109519. https://doi.org/10.1016/j.lwt.2020.109519
Costa, S. S., Machado, B. A. S., Martin, A. R., Bagnara, F., Ragadalli, S. A., & Alves, A. R. C. (2015). Drying by spray drying in the food industry: Micro-encapsulation, process parameters and main carriers used. African Journal of Food Science, 9(9), 462-470. https://doi.org/10.5897/AJFS2015.1279
Cutrim, C. S., Alvim, I. D., & Cortez, M. A. S. (2019). Microencapsulation of green tea polyphenols by ionic gelation and spray chilling methods. Journal of Food Science and Technology, 56, 3561-3570. https://doi.org/10.1007/s13197-019-03908-1
Da Cruz, M. C. R., Perussello, C. A., & Masson, M. L. (2018). Microencapsulated ascorbic acid: Development, characterization, and release profile in simulated gastrointestinal fluids. Journal of Food Process Engineering, 41(8), e12922. https://doi.org/10.1111/jfpe.12922
Da Silva Soares, B., Constantino, A. B. T., & Garcia-Rojas, E. E. (2024). Microencapsulation of curcumin by complex coacervation of lactoferrin and carboxymethyl tara gum for incorporation into edible films. Food Hydrocolloids for Health, 5, 100178. https://doi.org/10.1016/j.fhfh.2024.100178
De Abreu Figueiredo, J., de Paula Silva, C. R., Oliveira, M. F. S., Norcino, L. B., Campelo, P. H., Botrel, D. A., & Borges, S. V. (2022). Microencapsulation by spray chilling in the food industry: Opportunities, challenges, and innovations. Trends in Food Science & Technology, 120, 274-287. https://doi.org/10.1016/j.tifs.2021.12.015
De Freitas Santos, P. D., Batista, P. S., Torres, L. C. R., Thomazini, M., de Alencar, S. M., & Favaro-Trindade, C. S. (2023). Application of spray drying, spray chilling and the combination of both methods to produce tucumã oil microparticles: characterization, stability, and β-carotene bioaccessibility. Food Research International, 172, 113174. https://doi.org/10.1016/j.foodres.2023.113358
De Moura, S. C., Berling, C. L., Garcia, A. O., Queiroz, M. B., Alvim, I. D., & Hubinger, M. D. (2019). Release of anthocyanins from the hibiscus extract encapsulated by ionic gelation and application of microparticles in jelly candy. Food Research International, 121, 542-552. https://doi.org/10.1016/j.foodres.2018.12.010
Djihad, N., Naima, F. O., Petronilho, S., Hamid, S., Bedjou, F.N.E., & Coimbra, M.A. (2024). Microencapsulation of Citrus limon essential oil by complex coacervation and release behavior of terpenic and derived volatile compounds. Food Hydrocolloids, 152, 109830. https://doi.org/10.1016/j.foodhyd.2024.109830
Dolçà, C., Ferrándiz, M., Capablanca, L., Franco, E., Mira, E., López, F., & García, D. (2015). Microencapsulation of rosemary essential oil by co-extrusion/gelling using alginate as a wall material. Journal of Encapsulation and Adsorption Sciences, 5(3), 121-130. http://dx.doi.org/10.4236/jeas.2015.53010
Dubey, R., Shami, T.C., & Rao, K.U. (2009). Microencapsulation technology and applications. Defence Science Journal, 59(1), 82-95. https://doi.org/10.14429/dsj.59.1489
Ferreira, S. M., Tavares, L., & Santos, L. (2025). Enhanced microencapsulation of quercetin-rich onion (Allium cepa) peel extract in ethyl cellulose using a W/O/W double emulsion: Optimised production, characterisation, and controlled release. Journal of Polymers and the Environment, 1-20. https://doi.org/10.1007/s10924-025-03552-1
Fuentes, Y., Giovagnoli-Vicuña, C., Faúndez, M., & Giordano, A. (2023). Microencapsulation of Chilean papaya waste extract and its impact on physicochemical and bioactive properties. Antioxidants, 12(10), 1900. https://doi.org/10.3390/antiox12101900
Gallegos-Tintoré, S., May-Canché, M., Chel-Guerrero, L., Castellanos-Ruelas, A., & Betancur-Ancona, D. (2024). Preservation by ionic gelation encapsulation of the antioxidant activity of protein hydrolysate derived from Lionfish (Pterois volitans L.) muscle proteins. Food Science and Biotechnology, 33(13), 2979-2987. https://doi.org/10.1007/s10068-024-01557-5
Goh, K. M., Low, S. S., & Nyam, K. L. (2021). The changes of chemical composition of microencapsulated roselle (Hibiscus sabdariffa L.) seed oil by co-extrusion during accelerated storage. International Journal of Food Science and Technology, 56(12), 6649-6655. https://doi.org/10.1016/j.foodchem.2021.130131
Grassia, M., Messia, M. C., Marconi, E., Demirkol, Ȫ. Ş., Erdoğdu, F., Sarghini, F., ... & Planeta, D. (2021). Microencapsulation of phenolic extracts from cocoa shells to enrich chocolate bars. Plant Foods for Human Nutrition, 76, 449-457. https://doi.org/10.1007/s11130-021-00917-4
Gunel, Z. (2024). Microencapsulation of apricot kernel oil: Utilization of mushroom by-product as an emulsifier in oil-in-water emulsion. Anais da Academia Brasileira de Ciências, 96(2), e20220448. https://doi.org/10.1590/0001-3765202420220448
Gupta, C., Chawla, P., Arora, S., Tomar, S. K., & Singh, A. K. (2015). Iron microencapsulation with blend of gum arabic, maltodextrin and modified starch using modified solvent evaporation method–Milk fortification. Food Hydrocolloids, 43, 622-628. https://doi.org/10.1016/j.foodhyd.2014.07.021
Habibi, A., Keramat, J., Hojjatoleslamy, M., & Tamjidi, F. (2017). Preparation of fish oil microcapsules by complex coacervation of gelatin–gum arabic and their utilization for fortification of pomegranate juice. Journal of Food Process Engineering, 40(2), e12385. https://doi.org/10.1111/jfpe.12385
Hay, T. O., Nastasi, J. R., Prakash, S., & Fitzgerald, M. A. (2025). Comparison of Gidyea gum, gum Arabic, and maltodextrin in the microencapsulation and colour stabilisation of anthocyanin-rich powders using freeze-drying and spray-drying techniques. Food Hydrocolloids, 163, 111023. https://doi.org/10.1016/j.foodhyd.2024.111023
He, L., Xu, Q., Xin, W., Gu, H., Lin, Y., & Sun, P. (2025). Microencapsulation of Angelica sinensis essential oil by complex coacervation using chitosan and gelatin: Optimization, characterization, in vitro digestion, and biological activity. International Journal of Biological Macromolecules, 144365. https://doi.org/10.1016/j.ijbiomac.2025.144365
Herman-Lara, E., Rivera-Abascal, I., Gallegos-Marín, I., & Martínez-Sánchez, C. E. (2024). Encapsulation of hydroalcoholic extracts of Moringa oleifera seed through ionic gelation. LWT, 203, 116368. https://doi.org/10.1016/j.lwt.2024.116368
Hernández-Fernández, M. Á., García-Pinilla, S., Ocampo-Salinas, O. I., Gutiérrez-López, G. F., Hernández-Sánchez, H., Cornejo-Mazón, M., ... & Dávila-Ortiz, G. (2020). Microencapsulation of vanilla oleoresin (V. planifolia Andrews) by complex coacervation and spray drying: Physicochemical and microstructural characterization. Foods, 9(10), 1375. https://doi.org/10.3390/foods9070891
Hu, Y., Tu, J., Li, C., Peng, J., Xiao, Z., Wen, L., ... & Xiao, J. (2024). Microencapsulation of camellia seed oil by spray drying with pea protein and maltodextrin. LWT, 203, 116348. https://doi.org/10.1016/j.lwt.2024.116348
Jalalizand, F., & Goli, M. (2021). Optimization of microencapsulation of selenium with gum Arabian/Persian mixtures by solvent evaporation method using response surface methodology (RSM): soybean oil fortification and oxidation indices. Journal of Food Measurement and Characterization, 15, 495-507. https://doi.org/10.1007/s11694-020-00659-y
Janiszewska, E. (2014). Microencapsulated beetroot juice as a potential source of betalain. Powder Technology, 264, 190-196. https://doi.org/10.1016/j.powtec.2014.05.052
Jin, H., Wang, L., Yang, S., Wen, J., Zhang, Y., Jiang, L., & Sui, X. (2023). Producing mixed-soy protein adsorption layers on alginate microgels to controlled-release β-carotene. Food Research International, 164, 112319. https://doi.org/10.1016/j.foodhyd.2022.107902
Johari, M. A., Ali, F., Azmi, A. S., Anuar, H., Jamaluddin, J., & Hasham, R. (2024). Microencapsulation of Acalypha indica Linn. extracts using chitosan-polycaprolactone blends. Pertanika Journal of Science & Technology, 32(2). https://doi.org/10.47836/pjst.32.2.14
Juárez-Goiz, J.M., Gómez-Leyva, J.F., Bernardino-Nicanor, A., González-Cruz, L., & Andrade- González, I. (2018). Capsaicinoid microencapsulation of chili pepper fruit (C. annuum) oleoresin by complex coacervation. Food Measure, 12, 278-284. 1 https://doi.org/0.1007/s11694-017-9638-7
Karami, A., Babaloo, H., & Farhadian, N. (2023). Encapsulation: Spray chilling and cooling (Chapter 6). In F. Sefat, G. Farzi & M. Mozafari (Eds.), Principles of biomaterials encapsulation: Volume one (pp. 109-130). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-85947-9.00003-0
Lim, J. Y., How, Y. H., & Pui, L. P. (2024). Co-extrusion microencapsulation of Lactococcus lactis NZ3900 and its survivability in coconut water. Journal of Food Measurement and Characterization, 18(6), 4601-4610. https://doi.org/10.1007/s11483-024-10007-0
Mahapatra, A., Patil, S., & Dhakane-Lad, J. (2023). Spray chilling/cooling of nutraceutical ingredients. In R. Rajakumari, & S. Thomas (Eds.), Handbook of nutraceuticals: science, technology and engineering (pp. 1-21). Springer, Cham, International Publishing. https://doi.org/10.1007/978-3-030-69677-1_33-1
Malacrida, C. R., Ferreira, S., Zuanon, L. A. C., & Nicoletti Telis, V. R. (2015). Freeze‐drying for microencapsulation of turmeric oleoresin using modified starch and gelatin. Journal of Food Processing and Preservation, 39(6), 1710-1719. https://doi.org/10.1111/jfpp.12402
Manjanna, K. M., Shivakumar, B., & Kumar, T. P. (2010). Microencapsulation: an acclaimed novel drug-delivery system for NSAIDs in arthritis. Critical Reviews in Therapeutic Drug Carrier Systems, 27(6). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v27.i6.20
Mihalcea, L., Barbu, V., Enachi, E., Andronoiu, D. G., Râpeanu, G., Stoica, M., ... & Stănciuc, N. (2020). Microencapsulation of red grape juice by freeze drying and application in jelly formulation. Food Technology and Biotechnology, 58(1), 20-28. https://doi.org/10.17113/ftb.58.01.20.6429
Millinia, B. L., Mashithah, D., Nawatila, R., & Kartini, K. (2024). Microencapsulation of roselle (Hibiscus sabdariffa L.) anthocyanins: Effects of maltodextrin and trehalose matrix on selected physicochemical properties and antioxidant activities of spray-dried powder. Future Foods, 9, 100300. https://doi.org/10.1016/j.fufo.2024.100300
Mishra, P., Mishra, S., & Mahanta, C. L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252-258. https://doi.org/10.1016/j.fbp.2013.10.004
Muhaimin, M., Yusnaidar, Y., Syahri, W., Latief, M., & Chaerunisaa, A. Y. (2020). Microencapsulation of macaranga gigantea leaf extracts: Production and characterization. Pharmacognosy Journal, 12(4). https://doi.org/10.5530/pj.2020.12.98
Mukherjee, P., Baruah, K. N., & Uppaluri, R. V. (2024). Encapsulation and characterization of commercial green tea extracts using green methods: a comparative study of inclusion complexation and ion gelation. Journal of Food Measurement and Characterization, 18(2), 916-929. https://doi.org/10.1007/s11694-023-02250-7
Napiórkowska, A., Szpicer, A., Górska-Horczyczak, E., & Kurek, M. A. (2024). Microencapsulation of essential oils using faba bean protein and chia seed polysaccharides via complex coacervation method. Molecules, 29(9), 2019. https://doi.org/10.3390/molecules29092019
Nik, A. B., Vazifedoost, M., Didar, Z., & Hajirostamloo, B. (2019). The antioxidant and physicochemical properties of microencapsulated bioactive compounds in Securigera securidaca (L.) seed extract by co-crystallization. Food Quality and Safety, 3(4), 243-250. https://doi.org/10.1093/fqsafe/fyz022
Paucar, O. C., Tulini, F. L., Thomazini, M., Balieiro, J. C. D. C., Pallone, E. M. D. J. A., & Fávaro-Trindade, C. S. (2016). Production by spray chilling and characterization of solid lipid microparticles loaded with vitamin D3. Food and Bioproducts Processing, 100, 344-350. https://doi.org/10.1016/j.fbp.2016.08.006
Paulo, F., Paula, V., Estevinho, L. M., & Santos, L. (2021). Propolis microencapsulation by double emulsion solvent evaporation approach: Comparison of different polymeric matrices and extract to polymer ratio. Food and Bioproducts Processing, 127, 408-425. https://doi.org/10.1016/j.fbp.2021.03.019
Pellicer, J. A., Fortea, M. I., Trabal, J., Rodríguez-López, M. I., Gabaldón, J. A., & Núñez-Delicado, E. (2019). Stability of microencapsulated strawberry flavour by spray drying, freeze drying and fluid bed. Powder Technology, 347, 179-185. https://doi.org/10.1016/j.powtec.2019.03.010
Pudziuvelyte, L., Marksa, M., Sosnowska, K., Winnicka, K., Morkuniene, R., & Bernatoniene, J. (2020). Freeze-drying technique for microencapsulation of Elsholtzia ciliata ethanolic extract using different coating materials. Molecules, 25(9), 2237. https://doi.org/10.3390/molecules25204812
Rahayuningsih, E., Setiawan, F. A., Rahman, A. B. K., Siahaan, T., & Petrus, H. T. B. M. (2021). Microencapsulation of betacyanin from red dragon fruit (Hylocereus polyrhizus) peels using pectin by simple coacervation to enhance stability. Journal of Food Science and Technology, 58, 3379-3387. https://doi.org/10.1007/s13197-020-04910-8
Rebellato, A. P., De Moraes, P. P., Silva, J. G. S., Alvim, I. D., Lima Pallone, J. A., & Steel, C. J. (2024). Ferrous sulfate microparticles obtained by spray chilling: characterization, stability and in vitro digestion simulation. Journal of Food Science and Technology, 61(1), 97-105. https://doi.org/10.1007/s13197-023-05820-1
Reineccius, G., Patil, S., & Anantharamkrishnan, V. (2022). Encapsulation of orange oil using fluidized bed granulation. Molecules, 27(6), 1854. https://doi.org/10.3390/molecules27061854
Rodsuwan, U., Thumthanaruk, B., Vatanyoopaisarn, S., Thisayakorn, K., Zhong, Q., Panjawattanangkul, S., & Rungsardthong, V. (2024). Microencapsulation of gamma oryzanol using inulin as wall material by spray drying: optimization of formulation and characterization of microcapsules. Journal of Food Science and Technology, 61(11), 2177-2184. https://doi.org/10.1007/s13197-024-05988-0
Rokkam, M., & Vadaga, A. K. (2024). A brief review on the current trends in microencapsulation. Journal of Pharma Insights and Research, 2(3), 108-114. https://doi.org/10.69613/4ca2eh85
Ruiz-Gonzalez, N., Lopez-Malo, A., Palou, E., Ramirez-Corona, N., & Jimenez-Munguia, M. T. (2019). Antimicrobial activity and physicochemical characterization of oregano, thyme and clove leave essential oils, non-encapsulated and nanoencapsulated, using emulsification. Applied Food Biotechnology, 6(4), 237-246. https://doi.org/10.22037/afb.v6i4.25541
Rutz, J. K., Borges, C. D., Zambiazi, R. C., Crizel-Cardozo, M. M., Kuck, L. S., & Noreña, C. P. (2017). Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chemistry, 220, 59-66. https://doi.org/10.1016/j.foodchem.2016.09.201
Sá, S. H. G., Mazzocato, M. C., Saliba, A. S. M., Alencar, S. M., & Favaro-Trindade, C. S. (2023). Evaluation of the release, stability and antioxidant activity of Brazilian red propolis extract encapsulated by spray-drying, spray-chilling and using the combination of both techniques. Food Research International, 164, 112423. https://doi.org/10.1016/j.foodres.2022.112423
Sarabandi, K., Mahoonak, A. S., & Akbari, M. (2019). Physicochemical properties and antioxidant stability of microencapsulated marjoram extract prepared by co‐crystallization method. Journal of Food Process Engineering, 42(1), e12949. https://doi.org/10.1111/jfpe.12914
Sharayei, P., Azarpazhooh, E., & Ramaswamy, H. S. (2020). Effect of microencapsulation on antioxidant and antifungal properties of aqueous extract of pomegranate peel. Journal of Food science and Technology, 57(2), 723-733. https://doi.org/10.1007/s13197-019-04105-w
Sharifpour L., A., Rahimi, S., Javanmard D., M., & Basiri, A. (2025). Optimization of Persian lime essential oil (Citrus latifolia) microencapsulation through spout fluidized bed drying. Innovative Food Technologies, 12(2), 136-162. https://doi.org/10.22104/ift.2025.7377.2198
Shivakumar, H. N., Patel, R., & Desai, B. G. (2008). Formulation optimization of propranolol hydrochloride microcapsules employing central composite design. Indian Journal of Pharmaceutical Sciences, 70(3), 408. https://doi.org/10.4103/0250-474X.43024
Silva, M. P., Tulini, F. L., Ribas, M. M., Penning, M., Fávaro-Trindade, C. S., & Poncelet, D. (2016). Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: Characterization and evaluation of drying processes. Food Research International, 89, 582-590. https://doi.org/10.1016/j.foodres.2016.09.008
Silva, R., Pimentel, T. C., de Matos Junior, F. E., Esmerino, E. A., Freitas, M. Q., Fávaro-Trindade, C. S., ... & Cruz, A. G. (2022). Microencapsulation with spray-chilling as an innovative strategy for probiotic low sodium requeijão cremoso processed cheese processing. Food Bioscience, 46, 101517. https://doi.org/10.1016/j.fbio.2021.101517
Sriwidodo, S., Pratama, R., Umar, A. K., Chaerunisa, A. Y., Ambarwati, A. T., & Wathoni, N. (2022). Preparation of mangosteen peel extract microcapsules by fluidized bed spray-drying for tableting: improving the solubility and antioxidant stability. Antioxidants, 11(7), 1331. https://doi.org/10.3390/antiox11071331
Tatasciore, S., Santarelli, V., Neri, L., González Ortega, R., Faieta, M., Di Mattia, C. D., ... & Pittia, P. (2023). Freeze-drying microencapsulation of Hop extract: Effect of carrier composition on physical, techno-functional, and stability properties. Antioxidants, 12(2), 442. https://doi.org/10.3390/antiox12020442
Tavares, L., & Noreña, C. P. Z. (2020). Encapsulation of ginger essential oil using complex coacervation method: Coacervate formation, rheological property, and physicochemical characterization. Food and Bioprocess Technology, 13, 1405-1420. https://doi.org/10.1007/s11947-020-02480-3
Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276-1286. https://doi.org/10.1016/j.ijbiomac.2018.10.144
Tomsone, L., Galoburda, R., Kruma, Z., Durrieu, V., & Cinkmanis, I. (2020). Microencapsulation of horseradish (Armoracia rusticana L.) juice using spray-drying. Foods, 9(9), 1332. https://doi.org/10.3390/foods9091332
Tzatsi, P., & Goula, A. M. (2021). Encapsulation of extract from unused chokeberries by spray drying, co-crystallization, and ionic gelation. Waste and Biomass Valorization, 12, 4567-4585. https://doi.org/10.3390/pr9111973
Ulusal, H., Ulusal, F., Dagli, S., & Toprak, C. (2024). Extraction of malva sylvestris seed oil by Soxhlet method and alginate/chitosan microencapsulation with a new method: Investigation of its cytotoxic effects on human neuroblastoma cell line (SH-SY5Y). Journal of Radiation Research and Applied Sciences, 17(2), 100875. https://doi.org/10.1016/j.jrras.2024.100875
Utami, P. D., Setianingsih, H., & Tirto Sari, D. R. (2024). Microencapsulation, physicochemical characterization, and antioxidant, antibacterial, and antiplasmodial activities of Holothuria atra microcapsule. Scientifica, 2024, 5559133. https://doi.org/10.1155/2024/5559133
Vakarelova, M., Zanoni, F., Donà, G., Fierri, I., Chignola, R., Gorrieri, S., & Zoccatelli, G. (2023). Microencapsulation of astaxanthin by ionic gelation: effect of different gelling polymers on the carotenoid load, stability and bioaccessibility. International Journal of Food Science and Technology, 58(5), 2489-2497. https://doi.org/10.1111/ijfs.16156
Van, C. K., Nguyen, P. T. N., Nguyen, T. T. T., & Bach, L. G. (2024). Microencapsulation of Citrus latifolia peel essential oil by spray-drying using maltodextrin: Characterization, antimicrobial activities, and release profile. LWT, 197, 115825. https://doi.org/10.1016/j.lwt.2024.115825
Vieira, T. R. R., Lima, A. B., Ribeiro, C. M. C. M., de Medeiros, P. V. Q., Converti, A., dos Santos Lima, M., & Maciel, M. I. S. (2024). Red pitaya (Hylocereus polyrhizus) as a source of betalains and phenolic compounds: Ultrasound extraction, microencapsulation, and evaluation of stability. LWT, 196, 115755. https://doi.org/10.1016/j.lwt.2024.115755
Vivek, K., Mishra, S., Pradhan, R. C., Nagarajan, M., Kumar, P. K., Singh, S. S., ... & Gowda, N. N. (2023). A comprehensive review on microencapsulation of probiotics: technology, carriers and current trends. Applied Food Research, 3(1), 100248. https://doi.org/10.1016/j.lwt.2022.113119
Wang, J., Dong, X., Chen, S., & Lou, J. (2013). Microencapsulation of capsaicin by solvent evaporation method and thermal stability study of microcapsules. Colloid Journal, 75, 26-33. https://doi.org/10.1134/S1061933X13010134
Wangkulangkool, M., Ketthaisong, D., Tangwongchai, R., Boonmars, T., & Lomthaisong, K. (2023). Microencapsulation of chia oil using whey protein and gum Arabic for oxidation prevention: a comparative study of spray-drying and freeze-drying methods. Processes, 11(5), 1462. https://doi.org/10.3390/pr11061462
Wei, P., Zhang, Y., Wang, Y. Y., Dong, J. F., Lin, Z. H., Li, W., ... & Peng, C. (2023). Efficient extraction and excellent activity of flavonoid from Moringa oleifera leaves and its microencapsulation. LWT, 184, 115021. https://doi.org/10.1016/j.lwt.2023.115021
Yaman, D. M., Koçak Yanık, D., Elik Demir, A., Uzun Karka, H., Güçlü, G., Selli, S., ... & Göğüş, F. (2023). Effect of encapsulation techniques on aroma retention of Pistacia terebinthus L. fruit oil: spray drying, spray freeze drying, and freeze drying. Foods, 12(17), 3244. https://doi.org/10.3390/foods12173244
Copyright (c) 2025 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
