THE ROLE OF CAROTENOIDS IN PREVENTING OXIDATIVE STRESS: EXPLORING THE ANTIOXIDANT POTENTIAL OF PUMPKIN AS A FUNCTIONAL CROP
Sažetak
This review paper aims to explore the antioxidant properties of carotenoids and their role in mitigating oxidative stress caused by reactive oxygen species (ROS). Excessive ROS levels are linked to cellular damage, contributing to chronic diseases such as cancer, cardiovascular disorders, and neurodegenerative conditions. Carotenoids, natural pigments in various fruits and vegetables, exhibit significant antioxidant activity by neutralizing ROS and protecting cellular components. This paper highlights how carotenoids combat oxidative stress, emphasizing their ability to scavenge free radicals and prevent further lipid, protein, and DNA damage. Pumpkin (Cucurbita spp.) stands out as a valuable alternative crop due to its high carotenoid content, potential for sustainable cultivation, and versatility in developing functional foods and nutraceuticals. Among carotenoid-rich sources, pumpkins are distinguished by their high β-carotene content and additional carotenoids like lutein and zeaxanthin. These compounds not only enhance antioxidant defenses but also provide provitamin A activity, contributing to overall health. The review further discusses factors influencing carotenoid content in pumpkins, including cultivation practices, and post-harvest storage conditions. It also examines the impact of processing methods on carotenoid bioavailability, highlighting techniques such as steaming and freeze-drying that optimize nutrient retention. Key findings underscore the relevance of pumpkins as a sustainable and cost-effective source of carotenoids, suitable for functional food development. Promoting the inclusion of pumpkin-based products in diets is proposed as a practical strategy to combat oxidative stress and support public health.
Reference
Adadi, P., Barakova, N. V., & Krivoshapkina, E. F. (2018). Selected methods of extracting carotenoids, characterization, and health concerns: A review. Journal of Agricultural and Food Chemistry, 66(24), 5925-5947. https://doi.org/10.1021/acs.jafc.8b01407
Ahmad, R. (2024). Introductory chapter: Reactive Oxygen Species – Origin and significance. In R. Ahmad (Ed.) Reactive Oxygen Species: Advances and Developments (pp. 1-9). Schleswig-Holstein, Germany: BoD–Books on Demand.
Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant signaling & behavior, 6(11), 1720-1731. https://doi.org/10.4161/psb.6.11.17613
Arscott, S. A., & Tanumihardjo, S. A. (2010). Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Comprehensive Reviews in Food Science and Food Safety, 9(2), 223–239. https://doi.org/10.1111/j.1541-4337.2009.00103.x
Azevedo-Meleiro, C. H., & Rodriguez-Amaya, D. B. (2007). Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. Journal of Agricultural and Food Chemistry, 55(10), 4027-4033. https://doi.org/10.1021/jf063413d
Batool, M., Ranjha, M. M. A. N., Roobab, U., Manzoor, M. F., Farooq, U., Nadeem, H. R., Nadeem, M., Kanwal, R., AbdElgawad, H., Al Jaouni, S.K., Selim, S., & Ibrahim, S. A. (2022). Nutritional value, phytochemical potential, and therapeutic benefits of pumpkin (Cucurbita sp.). Plants, 11(11), 1394. https://doi.org/10.3390/plants11111394
Bengtsson, A., Namutebi, A., Alminger, M. L., & Svanberg, U. (2008). Effects of various traditional processing methods on the all-trans-β-carotene content in orange-fleshed sweet potato. Journal of Food Composition and Analysis, 21(2), 134–143. https://doi.org/10.1016/j.jfca.2007.09.006
Biesiada, A., Nawirska, A., Kucharska, A., & Sokól-Letowska, A. (2009). The effect of nitrogen fertilization methods on yield and chemical composition of pumpkin (Cucurbita maxima) fruits before and after storage. Vegetable Crops Research Bulletin, 70, 203. https://doi.org/10.2478/v10032-009-0020-0
Britton, G. (2022). Getting to know carotenoids. In T. Bugg & J. Carro (Eds.), Methods in enzymology (Vol. 670, pp. 1-56). Cambridge, Massachusetts, USA: Academic Press. https://doi.org/10.1016/bs.mie.2022.04.005
Chew, B. P., & Park, J. S. (2004). Carotenoid action on the immune response. The Journal of Nutrition, 134(1), 257S-261S. https://doi.org/10.1093/jn/134.1.257S
Dar, A. H., Sofi, S. A., & Rafiq, S. (2017). Pumpkin the functional and therapeutic ingredient: A review. International Journal of Food Sciences and Nutrition, 2, 165-170.
de Almeida, A. J. P. O., de Oliveira, J. C. P. L., da Silva Pontes, L. V., de Souza Júnior, J. F., Gonçalves, T. A. F., Dantas, S. H., de Almeida Feitosa, M.S., Silva, A.O., & de Medeiros, I. A. (2022). ROS: basic concepts, sources, cellular signaling, and its implications in aging pathways. Oxidative Medicine and Cellular Longevity, 2022(1), 1225578. https://doi.org/10.1155/2022/1225578
de Carvalho, L. M. J., Ortiz, G. M. D., de Carvalho, J. L. V., Smirdele, L., & de Souza Neves Cardoso, F. (2017). Carotenoids in yellow sweet potatoes, pumpkins and yellow sweet cassava. In D. Cvetković & G. Nikolić (Eds.), Carotenoids. (pp. 175-189). London, UK: IntechOpen. https://doi.org/10.5772/67717
Demmig-Adams, B., Stewart, J. J., López-Pozo, M., Polutchko, S. K., & Adams III, W. W. (2020). Zeaxanthin, a molecule for photoprotection in many different environments. Molecules, 25(24), 5825. https://doi.org/10.3390/molecules25245825
Dias, M. G., Camões, M. F. G., & Oliveira, L. (2014). Carotenoid stability in fruits, vegetables and working standards-Effect of storage temperature and time. Food Chemistry, 156, 37-41. https://doi.org/10.1016/j.foodchem.2014.01.050
Dutta, D., Chaudhuri, U. R., & Chakraborty, R. (2009). Degradation of total carotenoids and texture in frozen pumpkins when kept for storage under varying conditions of time and temperature. International Journal of Food Sciences and Nutrition, 60(1), 17–26. https://doi.org/10.1080/09637480701850220
El-Ramady, H. R., Domokos-Szabolcsy, É., Abdalla, N. A., Taha, H. S., & Fári, M. (2015). Postharvest management of fruits and vegetables storage. Sustainable Agriculture Reviews, 15, 65-152.
Shehzad, J. & Mustafa, G. (2023). Mechanism of Reactive Oxygen Species Regulation in Plants. In M. Faizan, S. Hayat, & S.M. Ahmed (Eds.), Reactive Oxygen Species: Prospects in Plant Metabolism. (pp. 17-43). London, UK: Springer Nature.
Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6(2), 466–488. https://doi.org/10.3390/nu6020466
Foret, M. K., Lincoln, R., Do Carmo, S., Cuello, A. C., & Cosa, G. (2020). Connecting the “dots”: from free radical lipid autoxidation to cell pathology and disease. Chemical Reviews, 120(23), 12757-12787. https://dx.doi.org/10.1021/acs.chemrev.0c00761
Gallicchio, L., Boyd, K., Matanoski, G., Tao, X. G., Chen, L., Lam, T. K., Shiels, M., Hammond, E., Robinson, K.A., Caulfield, L.E. & Herman, J.G. (2008). Carotenoids and the risk of developing lung cancer: a systematic review. The American Journal of Clinical Nutrition, 88(2), 372-383. https://doi.org/10.1093/ajcn/88.2.372
Granado, F., Olmedilla, B., & Blanco, I. (2003). Nutritional and clinical relevance of lutein in human health. The British Journal of Nutrition, 90(3), 487–502. https://doi.org/10.1079/BJN2003927
Halliwell, B. (2024). Understanding mechanisms of antioxidant action in health and disease. Nature Reviews Molecular Cell Biology, 25(1), 13-33.
Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. (pp. 1-30). Oxford University Press, USA.
Havaux, M. (2023). Review of lipid biomarkers and signals of photooxidative stress in plants. Plant Abiotic Stress Signaling, 111-128.
Hosen, M., Rafii, M. Y., Mazlan, N., Jusoh, M., Oladosu, Y., Chowdhury, M. F. N., Muhammad, I., & Khan, M. M. H. (2021). Pumpkin (Cucurbita spp.): a crop to mitigate food and nutritional challenges. Horticulturae, 7(10), 352. https://doi.org/10.3390/horticulturae7100352
Ifeanyi, O. E. (2018). A review on free radicals and antioxidants. International Journal of Current Research in Medical Sciences, 4(2), 123-133. http://dx.doi.org/10.22192/ijcrms.2018.04.02.019
Irato, P., & Santovito, G. (2021). Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants, 10(4), 579. https://doi.org/10.3390/antiox10040579
Jaswir, I., Shahidan, N., Othman, R., Hashim, Y. Z. H. Y., Octavianti, F., & bin Salleh, M. N. (2014). Effects of season and storage period on accumulation of individual carotenoids in pumpkin flesh (Cucurbita moschata). Journal of Oleo Science, 63(8), 761-767. https://doi.org/10.5650/jos.ess13186
Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of Toxicology, 97(10), 2499-2574. https://doi.org/10.1007/s00204-023-03562-9
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642. https://doi.org/10.3390/ijms22094642
Kadian, S. S., & Garg, M. (2012). Pharmacological effects of carotenoids: a review. International Journal of Pharmaceutical Sciences and Research, 3(1), 42.
Kaulmann, A., & Bohn, T. (2014). Carotenoids, inflammation, and oxidative stress-implications of cellular signaling pathways and relation to chronic disease prevention. Nutrition research, 34(11), 907-929. https://doi.org/10.1016/j.nutres.2014.07.010
Kehrer, J. P. (2000). The Haber–Weiss reaction and mechanisms of toxicity. Toxicology, 149(1), 43-50. https://doi.org/10.1016/S0300-483X(00)00231-6
Kim, M. Y., Kim, E. J., Kim, Y. N., Choi, C., & Lee, B. H. (2016). Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutrition Research and Practice, 6(1), 21–27. https://doi.org/10.4162/nrp.2012.6.1.21
Kļava, D., Kampuse, S., Tomsone, L., Kince, T., & Ozola, L. (2018). Effect of drying technologies on bioactive compounds maintenance in pumpkin by-products. Agronomy Research, 16(4), 1728-1741. https://doi.org/10.15159/AR.18.156
Krinsky, N. I., & Yeum, K. J. (2003). Carotenoid–radical interactions. Biochemical and Biophysical Research Communications, 305(3), 754-760. https://doi.org/10.1016/S0006-291X(03)00816-7
Kulczyński, B., & Gramza-Michałowska, A. (2019). The profile of carotenoids and other bioactive molecules in various pumpkin fruits (Cucurbita maxima Duchesne) cultivars. Molecules, 24(18), 3212. https://doi.org/10.3390/molecules24183212
Kurz, C., Carle, R., & Schieber, A. (2008). HPLC-DAD-MSn characterisation of carotenoids from apricots and pumpkins for the evaluation of fruit product authenticity. Food Chemistry, 110(2), 522-530. https://doi.org/10.1016/j.foodchem.2008.02.022
Lajšić, S. & Grujić-Injac, B. (2018). Hemija prirodnih proizvoda. Novi Sad: Univerzitet u Novom Sadu, Tehnološki fakultet.
Lima, P. M., Rubio, F. T., Silva, M. P., Pinho, L. S., Kasemodel, M. G., Favaro-Trindade, C. S., & Dacanal, G. C. (2019). Nutritional value and modelling of carotenoids extraction from pumpkin (Cucurbita moschata) peel flour by-product. International Journal of Food Engineering, 15(5-6), 20180381. https://doi.org/10.1515/ijfe-2018-0381
Liu, Z., Ren, Z., Zhang, J., Chuang, C. C., Kandaswamy, E., Zhou, T., & Zuo, L. (2018). Role of ROS and nutritional antioxidants in human diseases. Frontiers in Physiology, 9, 360203. https://doi.org/10.3389/fphys.2018.00477
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118. https://doi.org/10.4103/0973-7847.70902
Mailloux, R. J. (2015). Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biology, 4, 381-398. https://doi.org/10.1016/j.redox.2015.02.001
Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1-16. https://doi.org/10.1007/s11418-019-01364-x
Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2), 48-78. https://doi.org/10.3390/oxygen2020006
Martinez, A., Vargas, R., & Galano, A. (2009). What is important to prevent oxidative stress? A theoretical study on electron-transfer reactions between carotenoids and free radicals. The Journal of Physical Chemistry B, 113(35), 12113-12120. https://doi.org/10.1021/jp903958h
Martínez-Valverde, I., Periago, M. J., Provan, G., & Chesson, A. (2002). Phenolic compounds, lycopene, and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82(7), 760–768. https://doi.org/10.1002/jsfa.1035
Meléndez-Martínez, A. J., Mandić, A. I., Bantis, F., Böhm, V., Borge, G. I. A., Brnčić, M., Bysted, A., Cano, M.P., Dias, M.G., Elgersma, A., Fikselova, M., Garcia-Alonso, J., Giuffrida, D., Goncalves, V.S., Hornero-Mendez, D., Kljak, K., Lavelli, V., Manganaris, G.A., Mapelli-Brahm, P., Marounek, M., Olmdedilla-Alonso, B., Periago-Caston, M.J., Pintea, A., Sheehan, S.J., Šaponjac, V.T., Valsikova-Frey, M., Meulebroek, L.V., & O’Brien, N. (2022). A comprehensive review on carotenoids in foods and feeds: status quo, applications, patents, and research needs. Critical Reviews in Food Science and Nutrition, 62(8), 1999-2049. https://doi.org/10.1080/10408398.2020.1867959
Merhan, O. (2017). The biochemistry and antioxidant properties of carotenoids. In D. Cvetković & G. Nikolić (Eds.), Carotenoids (pp. 51-67). London, UK: IntechOpen. https://doi.org/10.5772/67717
Mirończuk-Chodakowska, I., Witkowska, A. M., & Zujko, M. E. (2018). Endogenous non-enzymatic antioxidants in the human body. Advances in Medical Sciences, 63(1), 68-78. https://doi.org/10.1016/j.advms.2017.05.005
Mohammed, M. (2014). Analysis of the Postharvest Knowledge System: Case Study of Pumpkin. Trinidad: Technical Centre for Agricultural and Rural Cooperation ACP-EU (CTA).
Mozaffarieh, M., Sacu, S., & Wedrich, A. (2003). The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: a review based on controversial evidence. Nutrition Journal, 2, 1-8.
Mrowicka, M., Mrowicki, J., Kucharska, E., & Majsterek, I. (2022). Lutein and zeaxanthin and their roles in age-related macular degeneration-neurodegenerative disease. Nutrients, 14(4), 827. https://doi.org/10.3390/nu14040827
Nawirska, A., Figiel, A., Kucharska, A. Z., Sokół-Łętowska, A., & Biesiada, A. (2009). Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. Journal of Food Engineering, 94(1), 14-20. https://doi.org/10.1016/j.jfoodeng.2009.02.025
Padovani, R. M., Amaya-Farfán, J., Colugnati, F. A. B., & Domene, S. M. Á. (2006). Dietary reference intakes: application of tables in nutritional studies. Revista de Nutricao-Campinas, 19(6), 741.
Pechinskii, S. V., & Kuregyan, A. G. (2014). The impact of carotenoids on immunity. Pharmaceutical Chemistry Journal, 47(10), 509-513. https://doi.org/10.0091-150X/14/4710-0509
Pereira, A. M., Krumreich, F. D., Ramos, A. H., Krolow, A. C. R., Santos, R. B., & Gularte, M. A. (2020). Physicochemical characterization, carotenoid content and protein digestibility of pumpkin access flours for food application. Food Science and Technology, 40, 691-698. https://doi.org/10.1590/fst.38819
Pérez-Gálvez, A., Viera, I., & Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), 505. https://doi.org/10.3390/antiox9060505
Peters, U., Leitzmann, M. F., Chatterjee, N., Wang, Y., Albanes, D., Gelmann, E. P., Friesen, M.D., Riboli, E., & Hayes, R. B. (2007). Serum lycopene, other carotenoids, and prostate cancer risk: a nested case-control study in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiology Biomarkers & Prevention, 16(5), 962-968. https://doi.org/10.1158/1055-9965.EPI-06-0861
Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11-26. https://doi.org/10.1007/s12291-014-0446-0
Pinna, N., Ianni, F., Selvaggini, R., Urbani, S., Codini, M., Grispoldi, L., Cenci-Goga, B.T., Cossignani, L., & Blasi, F. (2023). Valorization of pumpkin byproducts: Antioxidant activity and carotenoid characterization of extracts from peel and filaments. Foods, 12(21), 4035. https://doi.org/10.3390/foods12214035
Provesi, J. G., & Amante, E. R. (2015). Carotenoids in pumpkin and impact of processing treatments and storage. In V.Preedy (Ed.), Processing and impact on active components in food (pp. 71-80). Academic Press. https://doi.org/10.1016/B978-0-12-404699-3.00009-3
Provesi, J. G., Dias, C. O., & Amante, E. R. (2011). Changes in carotenoids during processing and storage of pumpkin products. Food Research International, 44(1), 243–248. https://doi.org/10.1016/j.foodchem.2011.03.027
Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods. (Vol. 71). Washington, DC, USA: ILSI press.
Rodriguez-Amaya, D. B. (2019). Update on natural food pigments-A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 124, 200-205. https://doi.org/10.1016/j.foodres.2018.05.028
Sharma, P., Kaur, G., Kehinde, B. A., Chhikara, N., Panghal, A., & Kaur, H. (2020). Pharmacological and biomedical uses of extracts of pumpkin and its relatives and applications in the food industry: a review. International Journal of Vegetable Science, 26(1), 79-95. https://doi.org/10.1080/19315260.2019.1606130
Shi, J., Kakuda, Y., & Yeung, D. (2004). Antioxidative properties of lycopene and other carotenoids from tomatoes: synergistic effects. Biofactors, 21(1-4), 203-210. https://doi.org/10.1002/biof.552210141
Sies, H., Belousov, V. V., Chandel, N. S., Davies, M. J., Jones, D. P., Mann, G. E., Murphy, M.P., Yamamoto, M., & Winterbourn, C. (2022). Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology, 23(7), 499-515.
Simpson, D. S., & Oliver, P. L. (2020). ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants, 9(8), 743. https://doi.org/10.3390/antiox9080743
Singh, G. (2007). Chemistry of terpenoids and carotenoids. New Delhi: Discovery Publishing House.
Stahl, W., & Sies, H. (2003). Antioxidant activity of carotenoids. Molecular Aspects of Medicine, 24(6), 345-351. https://doi.org/10.1016/S0098-2997(03)00030-X
Swami, S. B., Ghgare, S. N., Swami, S. S., Shinde, K. J., Kalse, S. B., & Pardeshi, I. L. (2020). Natural pigments from plant sources: A review. The Pharma Innovation Journal, 9(10), 56.
Tan, B. L., & Norhaizan, M. E. (2024). The Role of Diets in Oxidative Stress-Induced Diseases. In Nutrients and Oxidative Stress: Biochemistry Aspects and Pharmacological Insights. (pp. 71-97). Cham: Springer Nature Switzerland.
Uarrota, V. G., Stefen, D. L. V., Leolato, L. S., Gindri, D. M., & Nerling, D. (2018). Revisiting carotenoids and their role in plant stress responses: from biosynthesis to plant signaling mechanisms during stress. In D.K. Gupta, J.M. Palma & F.J. Corpas (Eds.) Antioxidants and antioxidant enzymes in higher plants. (pp. 207-232). London, UK: Springer Nature.
US Department of Agriculture (USDA). (2021). Food Data Central. Retrieved from https://fdc.nal.usda.gov/
Wang, Y., Chung, S. J., McCullough, M. L., Song, W. O., Fernandez, M. L., Koo, S. I., & Chun, O. K. (2014). Dietary carotenoids are associated with cardiovascular disease risk biomarkers mediated by serum carotenoid concentrations. The Journal of Nutrition, 144(7), 1067-1074. https://doi.org/10.3945/jn.113.184317
Sva prava zadržana (c) 2025 The Authors

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
