RAPESEED AS THE SOURCE OF PROTEINS: A REVIEW

  • Damjana Tomić Institute of Food Technology in Novi Sad
  • Jovana Simeunović Institute of Food Technology in Novi Sad
  • Branislava Đermanović Institute of Food Technology in Novi Sad
  • Aleksandar Maric Insitutute of Food Technology in Novi Sad, University of Novi Sad, Serbia
  • Marijana Sakač Institute of Food Technology in Novi Sad
  • Bojana Šarić Institute of Food Technology in Novi Sad
  • Pavle Jovanov Institute of Food Technology in Novi Sad
Keywords: rapeseed, protein isolates, antinutrients, extraction

Abstract


Rapeseed proteins can be isolated as high-value components from residual materials of oilseed processing. This review provides an overview of rapeseed protein isolate production, with an emphasis on conventional alkaline extraction and alternative methods. Special attention is given to antinutrient compounds found in rapeseed (glucosinolates, phenolic compounds, phytic acid, and others) and the strategies to mitigate them. Techniques that are effective in not only removing antinutrients but also increasing protein yield and reducing extraction time are discussed, including ultrasound, microwave, and enzymatic pretreatments. Enzymatic hydrolysis for obtaining rapeseed protein hydrolysates is also discussed, along with novel extraction methods for protein isolate production, particularly the use of natural deep eutectic solvents (NADES).

References

Aider, M., & Barbana, C. (2011). Canola proteins: Composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity – A practical and critical review. Trends in Food Science and Technology, 22(1), 21–39. https://doi.org/10.1016/j.tifs.2010.11.002

Akbari, A., & Wu, J. (2015). An integrated method of isolating napin and cruciferin from defatted canola meal. LWT-Food Science and Technology, 64(1), 308–315. https://doi.org/10.1016/j.lwt.2015.05.046

Alashi, A. M., Blanchard, C. L., Mailer, R. J., & Agboola, S. O. (2013). Technological and bioactive functionalities of canola meal proteins and hydrolysates. Food Reviews International, 29(3), 231–260. https://doi.org/10.1080/87559129.2013.790046

Albe-Slabi, S., Defaix, C., Beaubier, S., Galet, O., & Kapel, R. (2022). Selective extraction of napins: Process optimization and impact on structural and functional properties. Food Hydrocolloids, 122, 107105. https://doi.org/10.1016/j.foodhyd.2021.107105

Ampofo, J., & Ngadi, M. (2022). Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry. Ultrasonics Sonochemistry, 84, 105955. https://doi.org/10.1016/j.ultsonch.2022.105955

Arrutia, F., Binner, E., Williams, P., & Waldron, K. W. (2020). Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends in Food Science and Technology, 100, 88–102. https://doi.org/10.1016/j.tifs.2020.03.044

Baker, P. W., & Charlton, A. (2020). A comparison in protein extraction from four major crop residues in Europe using chemical and enzymatic processes – a review. Innovative Food Science and Emerging Technologies, 59, 102239. https://doi.org/10.1016/j.ifset.2019.102239

Banaś, K., Piwowar, A., & Harasym, J. (2023). The potential of rapeseed (canola) oil nutritional benefits wide spreading via oleogelation. Food Bioscience, 56, 103162. https://doi.org/10.1016/j.fbio.2023.103162

Bhatty, R. S., & Sosulski, F. W. (1972). Diffusion extraction of rapeseed glucosinolates with ethanolic sodium hydroxide. Journal of the American Oil Chemists’ Society, 49(6), 346–350. https://doi.org/10.1007/BF02633386

Borrello, M., Caracciolo, F., Lombardi, A., Pascucci, S., & Cembalo, L. (2017). Consumers’ perspective on circular economy strategy for reducing food waste. Sustainability, 9(1), 141. https://doi.org/10.3390/su9010141

Boukroufa, M., Sicaire, A. G., Fine, F., Larré, C., le Goff, A., Jamault, V. S., Rakotomanomana, N., & Che-mat, F. (2017). Green sonoextraction of protein from oleaginous press rapeseed cake. Molecules, 22(1), 80. https://doi.org/10.3390/molecules22010080

Bowen, H., Durrani, R., Delavault, A., Durand, E., Chenyu, J., Yiyang, L., Lili, S., Jian, S., Weiwei, H., & Fei, G. (2022). Application of deep eutectic solvents in protein extraction and purification. Frontiers in Chemistry, 10, 2022. https://doi.org/10.3389/fchem.2022.912411

Cháirez-Jiménez, C., Castro-López, C., Serna-Saldívar, S., & Chuck-Hernández, C. (2023). Partial charac-terization of canola (Brassica napus L.) protein isolates as affected by extraction and purification methods. Heliyon, 9(11), e21938. https://doi.org/10.1016/j.heliyon.2023.e21938

Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035

Chen, Y., Tao, X., Hu, S., He, R., Ju, X., Wang, Z., & Aluko, R. E. (2024). Effects of phytase/ethanol treatment on aroma characteristics of rapeseed protein isolates. Food Chemistry, 431, 137119. https://doi.org/10.1016/j.foodchem.2023.137119

Cheng, H., Liu, X., Xiao, Q., Zhang, F., Liu, N., Tang, L., Wang, J., Ma, X., Tan, B., Chen, J., & Jiang, X. (2022). Rapeseed meal and its application in pig diet: A review. Agriculture, 12(6), 849. https://doi.org/10.3390/agriculture12060849

Chew, S. C. (2020). Cold-pressed rapeseed (Brassica napus) oil: Chemistry and functionality. Food Research International, 131, 108997. https://doi.org/10.1016/j.foodres.2020.108997

Chmielewska, A., Kozłowska, M., Rachwał, D., Wnukowski, P., Amarowicz, R., Nebesny, E., & Rosicka-Kaczmarek, J. (2021). Canola/rapeseed protein – nutritional value, functionality, and food application: a review. Critical Reviews in Food Science and Nutrition, 61(22), 3836–3856. https://doi.org/10.1080/10408398.2020.1809342

Clemente, A. (2000). Enzymatic protein hydrolysates in human nutrition. Trends in Food Science & Technology, 11(7), 254–262. https://doi.org/10.1016/S0924-2244(01)00007-3

Dai, Y., van Spronsen, J., Witkamp, G. J., Verpoorte, R., & Choi, Y. H. (2013). Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta, 766, 61–68. https://doi.org/10.1016/j.aca.2012.12.019

Das, M. M., & Singhal, K. K. (2005). Effect of feeding chemically treated mustard cake on growth, thyroid and liver functions and carcass characteristics in kids. Small Ruminant Research, 56(1–3), 31–38. https://doi.org/10.1016/j.smallrumres.2003.08.023

Das Purkayastha, M., Gogoi, J., Kalita, D., Chatto-padhyay, P., Nakhuru, K. S., Goyary, D., & Mahanta, C. L. (2014). Physicochemical and functional properties of rapeseed protein isolate: Influence of antinutrient removal with acidified organic solvents from rapeseed meal. Journal of Agricultural and Food Chemistry, 62(31), 7903–7914. https://doi.org/10.1021/jf5023803

Dong, X-Y., Guo, L-L., Wei, F., Li, J-F., Jiang, M-L., Li, G-M., Zhao, Y-D., & Chen, H. (2011). Some characteristics and functional properties of rapeseed protein prepared by ultrasonication, ultrafiltration and isoelectric precipitation. Journal of the Science of Food and Agriculture, 91(8), 1488–1498. https://doi.org/10.1002/jsfa.4339

European Union. (2023). Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance). https://eur-lex.europa.eu/eli/reg/2023/915/oj/eng

Faizal, F. I., Ahmad, N. H., Yaacob, J. S., Abdul Halim-Lim, S., & Abd Rahim, M. H. (2023). Food processing to reduce antinutrients in plant-based foods. International Food Research Journal, 30(1), 25–45. https://doi.org/10.47836/ifrj.30.1.02

FEDIOL. (2022). Rapeseed production and processing in the EU. https://www.fediol.eu/

Fetzer, A., Herfellner, T., & Eisner, P. (2019). Rapeseed protein concentrates for non-food applications prepared from pre-pressed and cold-pressed press cake via acidic precipitation and ultrafiltration. Industrial Crops and Products, 132, 396–406. https://doi.org/10.1016/j.indcrop.2019.02.039

Fetzer, A., Müller, K., Schmid, M., & Eisner, P. (2020). Rapeseed proteins for technical applications: Processing, isolation, modification and functional properties – A review. Industrial Crops and Products, 158, 112986. https://doi.org/10.1016/j.indcrop.2020.112986

Friedman, M., Gumbmann, M. R., & Masters, P. M. (1984). Protein-Alkali Reactions: Chemistry, Toxicology, and Nutritional Consequences. In M. Friedman (Ed.), Nutritional and Toxicological Aspects of Food Safety. Advances in Experimental Medicine and Biology, 177, 367–412. Boston: Springer. https://doi.org/10.1007/978-1-4684-4790-3_18

Gołȩbiewska, K., Fraś, A., & Gołȩbiewski, D. (2022). Rapeseed meal as a feed component in monogastric animal nutrition-A review. Annals of Animal Science, 22(4), 1163–1183. https://doi.org/10.2478/aoas-2022-0020

Grudniewska, A., de Melo, E. M., Chan, A., Gniłka, R., Boratyński, F., & Matharu, A. S. (2018). Enhanced protein extraction from oilseed cakes using glycerol-choline chloride deep eutectic solvents: A biorefinery approach. ACS Sustainable Chemistry and Engineering, 6(11), 15791–15800. https://doi.org/10.1021/acssuschemeng.8b04359

Hansen, B. B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J. M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B. W., Gurkan, B., Maginn, E. J., Ra-gauskas, A., Dadmun, M., Zawodzinski, T. A., Baker, G. A., Tuckerman, M. E., Savinell, R. F., & Sangoro, J. R. (2021). Deep eutectic solvents: A re-view of fundamentals and applications. Chemical Reviews, 121(3), 1232–1285. https://doi.org/10.1021/acs.chemrev.0c00385

Ivanova, P., Kalaydzhiev, H., Rustad, T., Silva, C. L. M., & Chalova, V. I. (2017). Comparative biochemical profile of protein-rich products obtained from in-dustrial rapeseed meal. Emirates Journal of Food and Agriculture, 29(3), 170–178. https://doi.org/10.9755/ejfa.2016-11-1760

Jia, W., Rodriguez-Alonso, E., Bianeis, M., Keppler, J. K., & van der Goot, A. J. (2021). Assessing fun-ctional properties of rapeseed protein concentrate versus isolate for food applications. Innovative Food Science and Emerging Technologies, 68, 102636. https://doi.org/10.1016/j.ifset.2021.102636

Jiang, J., Nie, Y., Sun, X., & Xiong, Y. L. (2021). Partial removal of phenolics coupled with alkaline pH shift improves canola protein interfacial properties and emulsion in in vitro digestibility. Foods, 10(6), 1283. https://doi.org/10.3390/foods10061283

Jin, J., Ma, H., Wang, W., Luo, M., Wang, B., Qu, W., He, R., Owusu, J., & Li, Y. (2016). Effects and mechanism of ultrasound pretreatment on rapeseed protein enzymolysis. Journal of the Science of Food and Agriculture, 96(4), 1159–1166. https://doi.org/10.1002/jsfa.7198

Karimi, A., Bhowmik, P., Yang, T. C., Samaranayaka, A., & Chen, L. (2024). Extraction of canola protein via natural deep eutectic solvents compared to alkaline treatments: Isolate characteristics and protein structural and functional properties. Food Hydrocolloids, 152, 109922. https://doi.org/10.1016/j.foodhyd.2024.109922

Kist, J. A., Zhao, H., Mitchell-Koch, K. R., & Baker, G. A. (2021). The study and application of biomolecules in deep eutectic solvents. Journal of Materials Chemistry B, 9(3), 536–566. https://doi.org/10.1039/d0tb01656j

Knutsen, H. K., Alexander, J., Barregård, L., Bignami, M., Brüschweiler, B., Ceccatelli, S., Dinovi, M., Edler, L., Grasl‐Kraupp, B., Hogstrand, C., Ho-ogenboom, R., Nebbia, C. S., Oswald, I., Petersen, A., Rose, M., Roudot, A-C., Schwerdtle, T., Vollmer, G., Wallace, H., Cottrill, B., Dogliotti, E., Laakso, J., Metzler, M., Velasco, L., Baert, K., Gomez Ruiz, J. A., Varga, E., Dorr, B., Sousa, R., & Vleminckx, C. (2016). Erucic acid in feed and food. EFSA Journal, 14(11), e04593. https://doi.org/10.2903/j.efsa.2016.4593

Kumar, M., Tomar, M., Potkule, J., Verma, R., Punia, S., Mahapatra, A., Belwal, T., Dahuja, A., Joshi, S., Berwal, M. K., Satankar, V., Bhoite, A. G., Amaro-wicz, R., Kaur, C., & Kennedy, J. F. (2021). Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocolloids, 115, 106595. https://doi.org/10.1016/j.foodhyd.2021.106595

Li, J. F., Wei, F., Dong, X. Y., Guo, L. L., Yuan, G. Y., Huang, F. H., Jiang, M. L., Zhao, Y. D., Li, G. M., Chen, H. (2010). Microwave-assisted approach for the rapid enzymatic digestion of rapeseed meal. Food Science and Biotechnology, 19(2), 463–469. https://doi.org/10.1007/s10068-010-0065-3

Li, X., Shi, J., Scanlon, M., Xue, S. J., & Lu, J. (2021). Effects of pretreatments on physicochemical and structural properties of proteins isolated from canola seeds after oil extraction by supercritical-CO2 process. LWT-Food Science and Technology, 137, 110415. https://doi.org/10.1016/j.lwt.2020.110415

Liu, J., Li, X., & Row, K. H. (2022). Development of deep eutectic solvents for sustainable chemistry. Journal of Molecular Liquids, 362, 119654. https://doi.org/10.1016/j.molliq.2022.119654

Mykola, M., Uliana, M., Anna, H., Vitalii, K., Oksana, B., & Roman, B. (2023). Technological methods of improving rapeseed feed and reducing their toxicity. Modern Phytomorphology, 17, 125–133. https://doi.org/10.5281/zenodo.200121

Nega, T. (2018). Review on nutritional limitations and opportunities of using rapeseed meal and other rape seed by-products in animal feeding. Journal of Nutritional Health & Food Engineering, 8(1), 43–48. https://doi.org/10.15406/jnhfe.2018.08.00254

Niu, Y., Jiang, M., Wan, C., Yang, M., & Hu, S. (2013). Effect of microwave treatment on sinapic acid derivatives in rapeseed and rapeseed meal. Journal of the American Oil Chemists’ Society, 90(2), 307–313. https://doi.org/10.1007/s11746-012-2167-y

Östbring, K., Malmqvist, E., Nilsson, K., Rosenlind, I., & Rayner, M. (2020). The effects of oil extraction methods on recovery yield and emulsifying properties of proteins from rapeseed meal and press cake. Foods, 9(1), 19. https://doi.org/10.3390/foods9010019

Östbring, K., Tullberg, C., Burri, S., Malmqvist, E., & Rayner, M. (2019). Protein recovery from rapeseed press cake: Varietal and processing condition effects on yield, emulsifying capacity, and antioxidant activity of the protein-rich extract. Foods, 8(12), 627. https://doi.org/10.3390/foods8120627

Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R. L., & Duarte, A. R. C. (2014). Natural deep eutectic solvents – Solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2(5), 1063–1071. https://doi.org/10.1021/sc500096j

Perera, C. O., & Alzahrani, M. A. J. (2021). Ultrasound as a pre-treatment for extraction of bioactive compounds and food safety: A review. LWT-Food Science and Technology, 142, 111114. https://doi.org/10.1016/j.lwt.2021.111114

Picot-Allain, C., Mahomoodally, M. F., Ak, G., & Zengin, G. (2021). Conventional versus green ex-traction techniques – a comparative perspective. Current Opinion in Food Science, 40, 144–156. https://doi.org/10.1016/j.cofs.2021.02.009

Rodrigues, I. M., Carvalho, M. G. V. S., & Rocha, J. M. S. (2016). Increase of protein extraction yield from rapeseed meal through a pretreatment with phytase. Journal of the Science of Food and Agriculture, 97(8), 2641–2646. https://doi.org/10.1002/jsfa.8087

Rommi, K., Hakala, T. K., Holopainen, U., Nordlund, E., Poutanen, K., & Lantto, R. (2014). Effect of enzyme-aided cell wall disintegration on protein extractability from intact and dehulled rapeseed (Brassica rapa L. and Brassica napus L.) press cakes. Journal of Agricultural and Food Chemistry, 62(32), 7989–7997. https://doi.org/10.1021/jf501802e

Sari, Y. W., Bruins, M. E., & Sanders, J. P. M. (2013). Enzyme-assisted protein extraction from rapeseed, soybean, and microalgae meals. Industrial Crops and Products, 43(1), 78–83. https://doi.org/10.1016/j.indcrop.2012.07.01

Sari, Y. W., Mulder, W. J., Sanders, J. P. M., & Bruins, M. E. (2015). Towards plant protein refinery: Review on protein extraction using alkali and potential enzymatic assistance. Biotechnology Journal, 10(8), 1138–1157. https://doi.org/10.1002/biot.201400569

Singh, R., Langyan, S., Sangwan, S., Rohtagi, B., Khandelwal, A., & Shrivastava, M. (2022). Protein for human consumption from oilseed cakes: A review. Frontiers in Sustainable Food Systems, 6, 1–12. https://doi.org/10.3389/fsufs.2022.856401

Sorensen, H. (1990). Glucosinolates: structure, properties, function. In F. Shahidi (Ed.), Canola and rapeseed: Production, chemistry, nutrition, and processing technology (pp. 149-172). Boston (MA): Springer.

Tan, S. H., Mailer, R. J., Blanchard, C. L., & Agboola, S. O. (2011). Canola proteins for human consumption: Extraction, profile, and functional properties. Journal of Food Science, 76(1), R16-R28. https://doi.org/10.1111/j.1750-3841.2010.01930.x

Tavano, O. L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1–11. https://doi.org/10.1016/j.molcatb.2013.01.011

Tian, Y., Kriisa, M., Föste, M., Kütt, M. L., Zhou, Y., Laaksonen, O., & Yang, B. (2022). Impact of enzymatic pre-treatment on composition of nutrients and phytochemicals of canola (Brassica napus) oil press residues. Food Chemistry, 387, 132911. https://doi.org/10.1016/j.foodchem.2022.132911

Tzen, J. T. C. (2012). Integral proteins in plant oil bodies. ISRN Botany, 2012, 16. https://doi.org/10.5402/2012/173954

Vanda, H., Dai, Y., Wilson, E. G., Verpoorte, R., & Choi, Y. H. (2018). Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chimie, 21(6), 628–638. https://doi.org/10.1016/j.crci.2018.04.002

Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., & Millán, F. (2000). Partially hydrolyzed rapeseed protein isolates with improved functional properties. Journal of the American Oil Chemists’ Society, 77(4), 447–450. https://doi.org/10.1007/s11746-000-0072-y

Von Der Haar, D., Müller, K., Bader-Mittermaier, S., & Eisner, P. (2014). Rapeseed proteins – Production methods and possible application ranges. Oilseeds and Fats, Crops and Lipids, 21(1), D104. https://doi.org/https://doi.org/10.1051/ocl/2013038

Wali, A., Ma, H., Aadil, R. M., Zhou, C., Rashid, M. T., & Liu, X. (2017a). Effects of multifrequency ultra-sound pretreatment on the enzymolysis, ACE inhibitory activity, and the structure characterization of rapeseed protein. Journal of Food Processing and Preservation, 41(6), e13413. https://doi.org/10.1111/jfpp.13413

Wali, A., Ma, H., Shahnawaz, M., Hayat, K., Xiaong, J., & Jing, L. (2017b). Impact of power ultrasound on antihypertensive activity, functional properties, and thermal stability of rapeseed protein hydrolysates. Journal of Chemistry, 2017, ID 4373859, 1–11. https://doi.org/10.1155/2017/4373859

Wanasundara, J. P. D. (2011). Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Critical Reviews in Food Science and Nutrition, 51(7), 635–677. https://doi.org/10.1080/10408391003749942

Wanasundara, J. P. D., McIntosh, T. C., Perera, S. P., Withana-Gamage, T. S., & Mitra, P. (2016). Canola/rapeseed protein – functionality and nutrition. Oilseeds and Fats, Crops and Lipids, 23(4), D407. https://doi.org/10.1051/ocl/2016028

Wanasundara, J. P. D., Tan, S., Alashi, A. M., Pudel, F., & Blanchard, C. (2017). Proteins from canola/rapeseed: current status. Sustainable Protein Sources, 285–304. https://doi.org/10.1016/B978-0-12-802778-3.00018-4

Wang, B., Meng, T., Ma, H., Zhang, Y., Li, Y., Jin, J., & Ye, X. (2016). Mechanism study of dual-frequency ultrasound assisted enzymolysis on rapeseed protein by immobilized Alcalase. Ultrasonics Sono-chemistry, 32, 307–313. https://doi.org/10.1016/j.ultsonch.2016.03.023

Wnukowski, P., Veerman, C., & Smolders, G. J. F. (2015). U.S. Patent Application No. 14/234, 741.

Xiong, Z., Fu, Y., Yao, J., Zhang, N., He, R., Ju, X., & Wang, Z. (2022). Removal of anti-nutritional factors of rapeseed protein isolate (RPI) and toxicity assessment of RPI. Food & Function, 13(2), 664–674. https://doi.org/10.1039/d1fo03217h

Yagoub, A. A., Ma, H., & Zhou, C. (2017). Ultrasonic-assisted extraction of protein from rapeseed (Brassica napus L.) meal: Optimization of extraction conditions and structural characteristics of the protein. International Food Research Journal, 24(2), 621–629.

Yang, Z., Huang, Z., & Cao, L. (2022). Biotransformation technology and high-value application of rapeseed meal: a review. Bioresources and Bioprocessing, 9, 103. https://doi.org/10.1186/s40643-022-00586-4

Zhang, H., Wang, Y., Xu, K., Li, N., Wen, Q., Yang, Q., & Zhou, Y. (2016). Ternary and binary deep eutectic solvents as a novel extraction medium for protein partitioning. Analytical Methods, 8, 8196–8207. https://doi.org/10.1039/c6ay01860b

Zhang, R., Fang, X., Feng, Z., Chen, M., Qiu, X., Sun, J., Wu, M., & He, J. (2024). Protein from rapeseed for food applications: Extraction, sensory quality, functional and nutritional properties. Food Chemistry, 439, 138109. https://doi.org/10.1016/j.foodchem.2023.138109

Zhang, Z., He, S., Liu, H., Sun, X., Ye, Y., Cao, X., Wu, Z., & Sun, H. (2020). Effect of pH regulation on the components and functional properties of proteins isolated from cold-pressed rapeseed meal through alkaline extraction and acid precipitation. Food Chemistry, 327, 126998. https://doi.org/10.1016/j.foodchem.2020.126998

Published
2025/05/07
Section
Review article