ANTIMICROBIAL RESISTANCE OF Enterococcus spp. ISOLATED FROM ANIMAL-DERIVED FOOD

  • Dubravka Milanov Scientific Veterinary Institute Novi Sad
  • Suzana Vidaković Knežević Scientific Veterinary Institute "Novi Sad"
  • Jelena Vranešević Scientific Veterinary Institute "Novi Sad"
  • Stefan Dončić Scientific Veterinary Institute "Novi Sad"
  • Slobodan Knežević Scientific Veterinary Institute "Novi Sad"
  • Nevenka Aleksić 2University of Belgrade - Faculty of Veterinary Medicine
Keywords: Enterococcus, antimicrobial resistance, animal-derived food

Abstract


The current work aims to test the antimicrobial resistance of 92 Enterococcus spp. isolates from dairy products, eggs and meat in the Autonomous Province of Vojvodina, Serbia. As confirmed by PCR or MALDI TOF, E. faecalis was the most frequently encountered species (51.08%), followed by E. faecium (39.13%), E. hirae (6.52%), E. thailandicus (2.17%) and E. durans (1.08%). Generally, the most frequent resistance phenotype in all isolates was to tetracycline (34.78%), erythromycin (27.17%), doxycycline (21.73%) and streptomycin (13.04%). The phenotypic resistance to antimicrobials was less prevalent in enterococci isolates from dairy products than in meat isolates. Out of the 92 enterococci isolates, 16 (17.39%) were multidrug-resistant (MDR), primarily those from poultry (38.09%) and pork meat (21.05%). Resistance to fluoroquinolones was confirmed only in MDR enterococci isolates from poultry meat (28.57%). Resistance to vancomycin, ampicillin, linezolid, teicoplanin and tigecycline was not detected.

References

Aarestrup F. M. (1995). Occurrence of glycopeptide resistance among Enterococcus faecium isolates from conventional and ecological poultry farms. Microbial Drug Resistance (Larchmont, N.Y.), 1(3), 255–257. https://doi.org/10.1089/mdr.1995.1.255

Aarestrup F. M. (2000). Characterization of glycopeptide-resistant enterococcus faecium (GRE) from broilers and pigs in Denmark: genetic evidence that persistence of GRE in pig herds is associated with coselection by resistance to macrolides. Journal of Clinical Microbiology, 38(7), 2774–2777. https://doi.org/10.1128/JCM.38.7.2774-2777.2000

Adams, M.R. (1999). Safety of industrial lactic acid bacteria. Journal of Biotechnology, 68(2-3), 171-178. https://doi.org/10.1016/s0168-1656(98)00198-9.

Anderson, A. C., Jonas, D., Huber, I., Karygianni, L., Wölber, J., Hellwig, E., Arweiler, N., Vach, K., Wittmer, A., & Al-Ahmad, A. (2016). Enterococcus faecalis from food, clinical specimens, and oral sites: prevalence of virulence factors in association with biofilm formation. Frontiers in Microbiology, 6, 1534. https://doi.org/10.3389/fmicb.2015.01534

Bates, J., Jordens, J.Z., & Griffiths, D.T. (1994). Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man. Journal of Antimicrobial Chemotherapy, 34(4), 507-514. https://doi.org/10.1093/jac/34.4.507

Boccella, M., Santella, B., Pagliano, P., De Filippis, A., Casolaro, V., Galdiero, M., Borrelli, A., Capunzo, M., Boccia, G., & Franci, G. (2021). Prevalence and antimicrobial resistance of Enterococcus species: A retrospective cohort study in Italy. Antibiotics (Basel, Switzerland), 10(12), 1552. https://doi.org/10.3390/antibiotics10121552

Bortolaia, V., Espinosa-Gongora, C., & Guardabassi, L. (2016). Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat. Clinical Microbiology and Infection, 22(2), 130–140. https://doi.org/10.1016/j.cmi.2015.12.003.

Cebeci, T. (2024). Species prevalence, virulence genes, and antibiotic resistance of enterococci from food-producing animals at a slaughterhouse in Turkey. Scientific Reports, 14, 13191. https://doi.org/10.1038/s41598-024-63984-y

Cetinkaya, Y., Falk, P., & Mayhall, C.G. (2000). Vancomycin-resistant enterococci. Clinical Microbiology Reviews, 13(4), 686–707. doi:10.1128/CMR.13.4.686. https://pubmed.ncbi.nlm.nih.gov/11023964/

Chajecka-Wierzchowska, W., Zadernowska, A., & Laniewska-Trokenheim, L. (2017). Virulence factors of Enterococcus spp. presented in food. LWT - Food Science and Technology, 75, 670-676. http://dx.doi.org/10.1016/j.lwt.2016.10.026(CLSI)

Clinical and Laboratory Standards Institute. (2022). Performance standards for antimicrobial susceptibility testing, M100 (32nd ed.). Malvern, PA, USA: Clinical and Laboratory Standards Institute.

Dapkevicius, M.dL.E., Sgardioli, B., Camara, S.P.A., Poeta, P., & Malcata, F.X. (2021). Current trends of enterococci in dairy products: A comprehensive review of their multiple roles. Foods, 10(4), 821. https://doi.org/10.3390/foods10040821

De Kraker, M.E., Jarlier, V., Monen, J.C., Heuer, O.E., van de Sande, N., & Grundmann, H. (2013). The changing epidemiology of bacteriaemias in Europe: trends from the European Antimicrobial Resistance Surveillance System. Clinical Microbiology and Infections, 19(9), 860-868. https://doi.org/10.1111/1469-0691.12028.

Edmond, M.B., Ober, J.F., Weinbaum, D.L., Pfaller, M.A., Hwang, T., Sanford, M.D., & Wenzel, R.P. (1995). Vancomycin-resistant Enterococcus faecium bacteremia: risk factors for infection. Clinical Infectious Diseases, 20(5), 1126-33. https://doi.org/10.1093/clinids/20.5.1126. PMID: 7619987. https://pubmed.ncbi.nlm.nih.gov/7619987/

EUCAST. (2022). European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs Zone Diameters. Vaxjo, Sweden: European Committee on Antimicrobial Susceptibility Testing..

Flint, S. (2002). Enterococcus faecalis and Enterococcus faecium. In H. Roginski (Ed.), Encyclopedia of dairy sciences (pp.904-907). Elsevier. https://doi.org/10.1016/B0-12-227235-8/00144-9

Franz, C.M., Holzapfel, W.H., & Stiles, M.E. (1999). Enterococci at the crossroads of food safety? International Journal of Food Microbiology, 47(1-2), 1-24. https://doi.org/10.1016/s0168-1605(99)00007-0

Gilmore, M.S., Clewell, D.B., Ike, Y., & Shankar N. (Eds.) (2014). Enterococci: From commensals to leading causes of drug resistant infection. Boston, MA: Massachusetts Eye and Ear Infirmary. https://pubmed.ncbi.nlm.nih.gov/24649510/

Giraffa, G., Carminati, D., & Neviani, E. (1997). Enterococci isolated from dairy products: A review of risks and potential technological use. Journal of Food Protection, 60, 732–738. https://doi.org/10.4315/0362-028X-60.6.732.

Giraffa, G. (2002). Enterococci from foods. FEMS Microbiology Reviews, 26(2), 163-171. https://doi.org/10.1111/j.1574-6976.2002.tb00608.x

Gołaś-Prądzyńska, M., Łuszczyńska, M., & Rola, J. G. (2022). Dairy products: a potential source of multidrug-resistant Enterococcus faecalis and Enterococcus faecium strains. Foods, 11(24), 4116. https://doi.org/10.3390/foods11244116. https://pubmed.ncbi.nlm.nih.gov/36553858/

Golob, M., Pate, M., Kušar, D., Dermota, U., Avberšek, J., Papić, B., & Zdovc, I. (2019). Antimicrobial resistance and virulence genes in Enterococcus faecium and Enterococcus faecalis from humans and retail red meat. BioMed Research International, 2019, 2815279. https://doi.org/10.1155/2019/2815279.

Gordts, B., Van Landuyt, H., Ieven, M., Vandamme, P., & Goossens, H. (1995). Vancomycin-resistant enterococci colonizing the intestinal tracts of hospitalized patients. Journal of Clinical Microbiology, 33(11), 2842-2846. https://doi.org/10.1128/jcm.33.11.2842-2846.1995.

Gray, J.W., Stewart, D., & Pedler, S.J. (1991). Species identification and antibiotic susceptibility testing of enterococci isolated from hospitalized patients. Antimicrobial Agents and Chemotherapy, 35(9), 1943-1945. https://doi.org/10.1128/AAC.35.9.1943

Guan, L., Beig, M., Wang, L., Navidifar, T., Moradi, S., Motallebi Tabaei, F., Teymouri, Z., Abedi Moghadam, M., & Sedighi, M. (2024). Global status of antimicrobial resistance in clinical Enterococcus faecalis isolates: systematic review and meta-analysis. Annalas of Clinical Microbiology and Antimicrobials, 23(1), 80. https://doi.org/ 10.1186/s12941-024-00728-w/

Hayes, J.R., English, L.L., Carter, P.J., Proescholdt, T., Lee, K.Y., Wagner, D.D., & White D.G. (2003). Prevalence and antimicrobial resistance of Enterococcus species isolated from retail meats. Applied and Environmental Microbiology, 69(12), 7153-60. https://doi.org/10.1128/AEM.69.12.7153-7160.2003

Hammerum, A.M., Lester, C.H., & Heuer, O.E. (2010). Antimicrobial-resistant enterococci in animals and meat: a human health hazard? Foodborne Pathogens and Disease, 7(10), 1137-1146. https://doi.org/10.1089/fpd.2010.0552

Hammerum, A.M. (2012). Enterococci of animal origin and their significance for public health. Clinical Microbiology and Infection, 18(7), 619-625. https://doi.org/10.1111/j.1469-0691.2012.03829.x

Jamet, E., Akary, E., Poisson, M.-A., Chamba, J.-F., Bertrand, X., & Serror, P. (2012). Prevalence and characterization of antibiotic resistant Enterococcus faecalis in French cheeses. Food Microbiology, 31(2), 191–198. https://doi.org/ 10.1016/j.fm.2012.03.009

Jett, B.D., Huycke, M.M., & Gilmore, M.S. (1994). Virulence of enterococci. Clinical Microbiology Reviews, 7(4), 462-78. https://doi.org/10.1128/CMR.7.4.462

Johnston, L.M., & Jaykus L-A. (2004): Antimicrobial resistance of Enterococcus species isolated from produce. Applied and Environmental Microbiology, 70(5), 3133-3137. https://doi.org/10.1128/AEM.70.5.3133–3137.2004

Klare, I., Heier, H., Claus, H., Böhme, G., Marin, S., Seltmann, G., Hakenbeck, R., Antanassova, V., & Witte, W. (1995). Enterococcus faecium strains with vanA-mediated high-level glycopeptide resistance isolated from animal foodstuffs and fecal samples of humans in the community. Microbial Drug Resistance, 1(3), 265-72. https://doi.org/10.1089/mdr.1995.1.265

Kročko, M., Čanigova, M., Duckova, V., Artimova, A., Bezekova, J., & Poston, J. (2011). Antibiotic resistance of Enterococcus species isolated from raw foods of animal origin in south west part of Slovakia. Czech Journal of Food Science, 29(6), 654–659. https://doi.org/10.17221/246/2010-CJFS

Makarov, D.A., Ivanova, O.E., Pomazkova, A.V., Egoreva, M.A., Prasolova, O.V., Lenev, S.V., Gergel, M.A., Bukova, N.K., & Karabanov, S.Y. (2022). Antimicrobial resistance of commensal Enterococcus faecalis and Enterococcus faecium from food-producing animals in Russia. Veterinary World, 15(3), 611-621. https://doi.org/10.14202/vetworld.2022.611-621

McDonald, L.C., Kuehnert, M.J., Tenover, F.C., & Jarvis, W.R. (1997). Vancomycin-resistant enterococci outside the health-care setting: prevalence, sources, and public health implications. Emerging Infectious Diseases, 3(3), 311-317. https://doi.org/10.3201/eid0303.970307

Mwikuma, G., Kainga, H., Kallu, SA., Nakajima, C., Suzuki, Y., & Hang'ombe, BM. (2023) Determination of the prevalence and antimicrobial resistance of Enterococcus faecalis and Enterococcus faecium associated with poultry in four districts in Zambia. Antibiotics (Basel, Switzerland), 12(4), 657. https://doi.org/10.3390/antibiotics12040657

Palmer, K. L., Kos, V. N., & Gilmore, M.S. (2010). Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Current Opinion in Microbiology, 13(5), 632–639. https://doi.org/10.1016/j.mib.2010.08.004

Parte, A.C. (2018). LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. International Journal of Systematic and Evolutionary Microbiology, 68(6), 1825-1829. https://doi.org/10.1099/ijsem.0.002786

Peters, J., Mac, K., Wichmann-Schauer, H., Klein, G., & Ellerbroek, L. (2003). Species distribution and antibiotic resistance patterns of enterococci isolated from food of animal origin in Germany. International Journal of Food Microbiology, 88, 311–314. https://doi.org/10.1016/s0168-1605(03)00193-4

Popović, N., Dinić, M., Tolinački, M., Mihajlović, S., Terzić-Vidojević, A., Bojić S., Đokić, J., Golić, N., & Veljović, K. (2018). New insight into biofilm formation ability, the presence of virulence genes and probiotic potential of Enterococcus sp. dairy isolates. Frontiers in Microbiology, 9, 78. https://doi.org/10.3389/fmicb.2018.00078

Prabaker, K., & Weinstein, R.A. (2011). Trends in antimicrobial resistance in intensive care units in the United States. Current Opinion in Critical Care, 17(5), 472-479. https://doi.org/10.1097/MCC.0b013e32834a4b03

Rohana, H., Hager-Cohen, A., Azrad, M., & Peretz, A. (2023). Trend of changes in chloramphenicol resistance during the years 2017-2020: A retrospective report from Israel. Antibiotics (Basel, Switzerland), 12(2),196. https://doi.org/ 10.3390/antibiotics12020196

Rożanska, H., Lewtak-Piłat, A, & Osek, J. (2015) Antimicrobial resistance of Enterococcus faecalis isolated from meat. Bulletin of the Veterinary Institute in Pulawy, 59, 229-233. https://doi.org/10.1515/bvip-2015-0034

Ružičkova, M., Vitezova, M., & Kushkevych, I. (2020). The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease. Open Medicine (Warsaw), 15, 211-224. https://doi.org/10.1515/med-2020-0032

Sadek, O.A. & Koriem, A.M. (2022). Multidrug resistance and virulence factors of Enterococci isolated from milk and some dairy desserts. Journal of Food Quality and Hazards Control, 9, 215-225. https://doi.org/10.18502/jfqhc.9.4.11376

Schleifer, K.H. & Kilpper-Balz, R. (1984). Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and comb. nov. International Journal of Systematic Bacteriology, 34(1), 31-34. https://doi.org/10.1099/00207713-34-1-31

Schaberg, D.R., Culver, D.H., & Gaynes, R.P. (1991). Major trends in the microbial etiology of nosocomial infection. American Journal of Medicine, 91(3B):72S-75S. https://doi.org/10.1016/0002-9343(91)90346-y

Shepard, B.D., & Gilmore, M.S. (2002). Antibiotic-resistant enterococci: the mechanisms and dynamics of drug introduction and resistance. Microbes and Infection, 4(2), 215-224. https://doi.org/10.1016/S1286-4579(01)01530-1

Terzić-Vidojević, A., Veljović, K., Begović, J., Filipić, B., Popović, D., Tolinački, M., Miljković, M., Kojić, M., & Golić, N. (2015). Diversity and antibiotic susceptibility of autochthonous dairy enterococci isolates: are they safe candidates for autochthonous starter cultures? Frontiers in Microbiology, 6, 954. https://doi.org/10.3389/fmicb.2015.00954

Van den Bogaard, A.E., & Stobberingh, E.E. (2000). Epidemiology of resistance to antibiotics. Links between animals and humans. International Journal of Antimicrobial Agents, 14, 327-335. https://doi.org/10.1016/s0924-8579(00)00145-x.

Velhner, M., Prunić, B., Aleksić, N., Todorović, D., Knežević, S., & Ljubojević Pelić, D. (2024). Antimicrobial resistance of Enterococcus isolates from poultry farms in the Republic of Serbia (Autonomous Province of Vojvodina). Microorganisms, 12(7), 1483. https://doi.org/10.3390/microorganisms12071483

Vyrostkova J., Regecova I., Dudrikova E., Marcinčak S., Vargova M., Kovačova M., & Malova J. (2021). Antimicrobial resistance of Enterococcus sp. isolated from sheep and goat cheeses. Foods, 10(8), 1844. https://doi.org/10.3390/foods10081844

Witte, W. (2000). Selective pressure by antibiotic use in livestock. International Antimicrobial Agents, 16 (Suppl. 1), S19-S24. https://doi.org/10.1016/s0924-8579(00)00301-0

Willems, R.J., Top, J., van Santen, M., Robinson, D.A., Coque, T.M., Baquero, F., Grundmann, H., & Bonten, M.J. (2005). Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerging Infectious Diseases, 11(6), 821-8. https://doi.org/10.3201/1106.041204

Xuan, H., Yao, X., Pan, R., Gao, Y., Wei, J,. Shao, D., Liu, K., Li, Z., Qiu, Y., Ma, Z., Li, B., & Xia L. (2021). Antimicrobial resistance in Enterococcus faecium and Enterococcus faecalis isolates of swine origin from eighteen provinces in China. The Journal of Veterinary Medical Science, 83(12), 1952-1958. https://doi.org/10.1292/jvms.21-0413

Published
2025/06/05
Section
Original research paper