IMPACT OF THERMAL AND ALTERNATIVE PROCESSING ON PHYTOCHEMICAL QUALITY AND ANTIOXIDANT ACTIVITY OF ALGERIAN MYRTUS COMMUNIS L. FRUIT

Keywords: Myrtle fruit, drying treatments, freeze drying, oven drying, microwave drying, phenolic compounds, antioxidant capacity

Abstract


Myrtle (Myrtus communis L.) fruits serve as a crucial reservoir of biologically active and health-protective compounds. These fruits have gained increasing attention for their potential to promote human health due to their diverse range of bioactive phytochemicals. Drying, a common post-harvest treatment, can significantly affect the content and biological efficacy of these compounds. The objective of this study was to investigate the phenolic compound content and antioxidant capacity of myrtle (Myrtus communis L.) fruits as influenced by four different drying methods: FD (freeze drying), SD (sun drying), OD (oven drying), and MWD (microwave drying). Various bioactive compounds were quantified, including total phenolic content (TPC), total flavonoid content (TFC), total flavonol content, total condensed tannin content (CTC), and anthocyanin content (AC). Antioxidant capacity was assessed using four different tests: the DPPH radical scavenging assay (DPPH-RSA), the ABTS radical scavenging assay (ABTS-RSA), the ferric reducing power assay (FRP), and the phosphomolybdenum antioxidant activity assay (PAA). The results indicated that the drying process significantly affected the phytochemical composition and antioxidant capacity of myrtle fruit. Specifically, the freeze-drying (FD) method yielded the highest TPC, TFC, flavonols, CTC, AC, with values of 88.12 mg GAE/g DW, 12.05 mg QE/g DW, 29.99 mg RE/g DW, 75.40 mg CE/g DW, and 4.96 mg CGE/g DW, respectively. Furthermore, FD was associated with the strongest antioxidant activity, demonstrating DPPH-RSA of 143.37 mg TE/g DW, ABTS-RSA of 154.31 mg TE/g DW, FRP of 89.25 AAE/g DW, and PAA of 354.58 TE/g DW, all surpassing the other drying methods. In contrast, sun drying (SD) and oven drying (OD) had a moderate impact on phytochemical composition and antioxidant capacity, while microwave drying (MWD) resulted in the lowest levels of phytochemical content and relatively low antioxidant capacity. Additionally, the correlation test and Principal Component Analysis (PCA) confirmed the effectiveness of FD method in preserving the bioactive compounds and antioxidant activities of myrtle fruits. These findings suggest that FD is the most effective method for maintaining and enhancing the bioactive properties of myrtle fruits.

References

Abouelenein, D., Mustafa, A. M., Angeloni, S., Borsetta, G., Vittori, S., Maggi, F.,…Caprioli, G. (2021). Influence of freezing and different drying methods on volatile profiles of strawberry and analysis of volatile compounds of strawberry commercial jams. Molecules, 26(14), 4153. https://doi.org/https://doi.org/10.3390/molecules26144153

Aggul, A. G., Demir, G. M., & Gulaboglu, M. (2022). Ethanol extract of myrtle (Myrtus communis L.) berries as a remedy for streptozotocin-induced oxidative stress in rats. Applied Biochemistry and Biotechnology, 194(4), 1645-1658. https://doi.org/https://doi.org/10.1007/s12010-021-03753-z

Aherne, S. A., & O’Brien, N. M. (2002). Dietary flavonols: chemistry, food content, and metabolism. Nutrition, 18(1), 75-81. https://doi.org/https://doi.org/10.1016/S0899-9007(01)00695-5

Al-Maharik, N., Jaradat, N., Al-Hajj, N., & Jaber, S. (2023). Myrtus communis L.: essential oil chemical composition, total phenols and flavonoids contents, antimicrobial, antioxidant, anticancer, and α-amylase inhibitory activity. Chemical and Biological Technologies in Agriculture, 10(1), 41.

Alean, J., Chejne, F., & Rojano, B. (2016). Degradation of polyphenols during the cocoa drying process. Journal of Food Engineering, 189, 99-105. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2016.05.026

Alkaltham, M. S., Salamatullah, A. M., Özcan, M. M., Uslu, N., Hayat, K., & Mohamed Ahmed, I. A. (2021). Influence of different drying methods on antioxidant activity, total phenol, and phenolic compounds of myrtle (Myrtus communis L.) fruits. Journal of Food Processing and Preservation, 45(4), e15308. https://doi.org/https://doi.org/10.1111/jfpp.15308

Arslan, D., & Özcan, M. M. (2010). Study the effect of sun, oven and microwave drying on quality of onion slices. LWT-Food Science and Technology, 43(7), 1121-1127. https://doi.org/https://doi.org/10.1016/j.lwt.2010.02.019

Aykac, A., Ozbeyli, D., Uncu, M., Ertaş, B., Kılınc, O., Şen, A.,…Sener, G. (2019). Evaluation of the protective effect of Myrtus communis in scopolamine-induced Alzheimer model through cholinergic receptors. Gene, 689, 194-201. https://doi.org/https://doi.org/10.1016/j.gene.2018.12.007

Azimi, M., & Hasheminasab, F. S. (2020). Evaluating the efficacy and safety of the myrtle (Myrtus communis) in treatment and prognosis of patients suspected to novel coronavirus disease (COVID-19): study protocol for a randomized controlled trial. Trials, 21, 1-5. https://doi.org/10.1186/s13063-020-04915-w

Bagatin, E., Thouvenin, M. D., Bacquey, A., Baradat, S., Lauze, C., Mengeaud, V.,…Rocha, M. A. (2023). The usefulness of a dermocosmetic containing Myrtus communis extract and azelaic acid for maintenance phase of adult female acne: Results from a randomized exploratory investigator‐blinded comparative study. Journal of the European Academy of Dermatology and Venereology, 37, 26-30. https://doi.org/10.1111/jdv.18795

Bakar, B., Çakmak, M., Özer, D., Karataş, F., & Saydam, S. (2021). Some biochemical parameters of black and white myrtle communis L. fruits subjected to different preservation methods. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(3), 587-596. https://doi.org/https://doi.org/10.29133/yyutbd.886684

Barboni, T., Cannac, M., Massi, L., Perez-Ramirez, Y., & Chiaramonti, N. (2010). Variability of polyphenol compounds in Myrtus communis L.(Myrtaceae) berries from Corsica. Molecules, 15(11), 7849-7860. https://doi.org/https://doi.org/10.3390/molecules15117849

Bassey, E. J., Cheng, J.-H., & Sun, D.-W. (2024). Comparative elucidation of bioactive and antioxidant properties of red dragon fruit peel as affected by electromagnetic and conventional drying approaches. Food Chemistry, 439, 138118. https://doi.org/https://doi.org/10.1016/j.foodchem.2023.138118

Benmarce, M., Haif, A., Elissondo, M. C., Bouaziz, S., Bentahar, A., & Laatamna, A. (2024). Comparison of the scolicidal activity of two leaves extracts of Myrtus communis from Algeria against Echinococcus granulosus Sensu Lato Protoscoleces. Acta Parasitologica, 69(1), 839-853.

Bi, Y., Ni, J., Xue, X., Zhou, Z., Tian, W., Orsat, V.,…Fang, X. (2024). Effect of different drying methods on the amino acids, α-dicarbonyls and volatile compounds of rape bee pollen. Food Science and Human Wellness, 13(1), 517-527. https://doi.org/https://doi.org/10.26599/FSHW.2022.9250045

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. https://doi.org/https://doi.org/10.1038/1811199a0

Bouaoudia-Madi, N., Dairi, S., Aoun, O., Kadri, N., Madani, K., & Boulekbache-Makhlouf, L. (2022). Ultrasound as pre-treatment for microwave drying of Myrtus communis fruits: Influence on phenolic compounds and antioxidant activity. The North African Journal of Food and Nutrition Research, 6(14), 126-134. https://doi.org/https://doi.org/10.51745/najfnr.6.14.126-134

Calín-Sánchez, Á., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, Á. A., & Figiel, A. (2020). Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods, 9(9), 1261. https://doi.org/https://doi.org/10.3390/foods9091261

Charmongkolpradit, S., Somboon, T., Phatchana, R., Sang-aroon, W., & Tanwanichkul, B. (2021). Influence of drying temperature on anthocyanin and moisture contents in purple waxy corn kernel using a tunnel dryer. Case Studies in Thermal Engineering, 25, 100886. https://doi.org/https://doi.org/10.1016/j.csite.2021.100886

Correddu, F., Maldini, M., Addis, R., Petretto, G. L., Palomba, M., Battacone, G.,…Pintore, G. (2019). Myrtus communis liquor byproduct as a source of bioactive compounds. Foods, 8(7), 237.

Das, A., Raychaudhuri, U., & Chakraborty, R. (2012). Effect of freeze drying and oven drying on antioxidant properties of fresh wheatgrass. International journal of Food Sciences and Nutrition, 63(6), 718-721. https://doi.org/https://doi.org/10.3109/09637486.2011.644769

De la Fuente-Blanco, S., De Sarabia, E. R.-F., Acosta-Aparicio, V., Blanco-Blanco, A., & Gallego-Juárez, J. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523-e527. https://doi.org/https://doi.org/10.1016/j.ultras.2006.05.181

Dinçer, C., Doğan, A., & Erkan, M. (2022). Effect of various drying methods on drying characteristics of black and white myrtle fruits (Myrtus communis L.). Erwerbs-Obstbau, 64(3), 433-443. https://doi.org/https://doi.org/10.1007/s10341-022-00641-6

Fardet, A., Richonnet, C., & Mazur, A. (2019). Association between consumption of fruit or processed fruit and chronic diseases and their risk factors: A systematic review of meta-analyses. Nutrition Reviews, 77(6), 376-387.

Firooziyan, S., Osanloo, M., Basseri, H. R., Moosa-Kazemi, S. H., Hajipirloo, H. M., Amani, A., & Sedaghat, M. M. (2022). Nanoemulsion of Myrtus communis essential oil and evaluation of its larvicidal activity against Anopheles stephensi. Arabian Journal of Chemistry, 15(9), 104064.

Garcìa, L. M., Ceccanti, C., Negro, C., De Bellis, L., Incrocci, L., Pardossi, A., & Guidi, L. (2021). Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. leaves. Horticulturae, 7(1), 10. https://doi.org/https://doi.org/10.3390/horticulturae7010010

Ghorbani, A., Eghlima, G., Farzaneh, M., & Rezghiyan, A. (2025). Effect of drying methods on mucilage, anthocyanin content, and antioxidant activity of black hollyhock (Alcea rosea var. nigra). BMC Plant Biology, 25(1), 478. https://doi.org/https://doi.org/10.1186/s12870-025-06524-8

Gorjian, H., & Khaligh, N. G. (2023). Myrtle: a versatile medicinal plant. Nutrire, 48(1), 10. https://doi.org/https://doi.org/10.1186/s41110-023-00194-y

Gupta, M., Karmakar, N., Sasmal, S., Chowdhury, S., & Biswas, S. (2016). Free radical scavenging activity of aqueous and alcoholic extracts of Glycyrrhiza glabra Linn. measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical antioxidant assay. International Journal of Pharmacology and Toxicology, 4, 235-240. https://doi.org/https://doi.org/10.14419/ijpt.v4i2.6578

Hamrouni-Sellami, I., Rahali, F. Z., Rebey, I. B., Bourgou, S., Limam, F., & Marzouk, B. (2013). Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food and Bioprocess Technology, 6(3), 806-817. https://doi.org/https://doi.org/10.1007/s11947-012-0877-7

Kayacan, S., Karasu, S., Akman, P. K., Goktas, H., Doymaz, I., & Sagdic, O. (2020). Effect of different drying methods on total bioactive compounds, phenolic profile, in vitro bioaccessibility of phenolic and HMF formation of persimmon. LWT, 118, 108830. https://doi.org/https://doi.org/10.1016/j.lwt.2019.108830

Kordali, S., Usanmaz, A., Cakir, A., Komaki, A., & Ercisli, S. (2016). Antifungal and herbicidal effects of fruit essential oils of four Myrtus communis genotypes. Chemistry & Biodiversity, 13(1), 77-84. https://doi.org/https://doi.org/10.1002/cbdv.201500018

Lawag, I. L., Nolden, E. S., Schaper, A. A., Lim, L. Y., & Locher, C. (2023). A modified Folin-Ciocalteu assay for the determination of total phenolics content in honey. Applied Sciences, 13(4), 2135. https://doi.org/https://doi.org/10.3390/app13042135

López-Parra, M. B., Gómez-Domínguez, I., Iriondo-DeHond, M., Villamediana Merino, E., Sánchez-Martín, V., Mendiola, J. A.,…Del Castillo, M. D. (2024). The Impact of the drying process on the antioxidant and anti-inflammatory potential of dried ripe coffee cherry pulp soluble powder. Foods, 13(7), 1114. https://doi.org/https://doi.org/10.3390/foods13071114

Mahboubi, M. (2017). Effectiveness of Myrtus communis in the treatment of hemorrhoids. Journal of Integrative Medicine, 15(5), 351-358. https://doi.org/https://doi.org/10.1016/s2095-4964(17)60340-6

Maldini, M., Chessa, M., Petretto, G. L., Montoro, P., Rourke, J. P., Foddai, M.,…Pintore, G. (2016). Profiling and simultaneous quantitative determination of anthocyanins in wild Myrtus communis L. berries from different geographical areas in sardinia and their comparative evaluation. Phytochemical Analysis, 27(5), 249-256. https://doi.org/https://doi.org/10.1002/pca.2623

Mitsunaga, T., Doi, T., Kondo, Y., & Abe, I. (1998). Color development of proanthocyanidins in vanillin-hydrochloric acid reaction. Journal of Wood Science, 44, 125-130. https://doi.org/https://doi.org/10.1007/bf00526257

Mohd Zainol, M., Abdul-Hamid, A., Abu Bakar, F., & Pak Dek, S. (2009). Effect of different drying methods on the degradation of selected flavonoids in Centella asiatica. International Food Research Journal, 16(4), 531-537.

Nawawi, N. I. M., Ijod, G., Abas, F., Ramli, N. S., Mohd Adzahan, N., & Mohamad Azman, E. (2023). Influence of different drying methods on anthocyanins composition and antioxidant activities of mangosteen (Garcinia mangostana L.) pericarps and LC-MS analysis of the active extract. Foods, 12(12), 2351. https://doi.org/https://doi.org/10.3390/foods12122351

Nemzer, B., Vargas, L., Xia, X., Sintara, M., & Feng, H. (2018). Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chemistry, 262, 242-250. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.04.047

Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition And Dietetics, 44(6), 307-315. https://doi.org/https://doi.org/10.5264/eiyogakuzashi.44.307

Özcan, M. M., Al Juhaimi, F., Ahmed, I. A. M., Uslu, N., Babiker, E. E., & Ghafoor, K. (2020). Effect of microwave and oven drying processes on antioxidant activity, total phenol and phenolic compounds of kiwi and pepino fruits. Journal of Food Science and Technology, 57, 233-242. https://doi.org/https://doi.org/10.1007/s13197-019-04052-6

Pashazadeh, H., Redha, A. A., & Koca, I. (2024). Effect of convective drying on phenolic acid, flavonoid and anthocyanin content, texture and microstructure of black rosehip fruit. Journal of Food Composition and Analysis, 125, 105738. https://doi.org/https://doi.org/10.1016/j.jfca.2023.105738

Periche, A., Castelló, M. L., Heredia, A., & Escriche, I. (2016). Effect of different drying methods on the phenolic, flavonoid and volatile compounds of Stevia rebaudiana leaves. Flavour and Fragrance Journal, 31(2), 173-177. https://doi.org/https://doi.org/10.1002/ffj.3298

Pravallika, K., Chakraborty, S., & Singhal, R. S. (2023). Supercritical drying of food products: An insightful review. Journal of Food Engineering, 343, 111375.

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341. https://doi.org/https://doi.org/10.1006/abio.1999.4019

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/https://doi.org/10.1016/s0891-5849(98)00315-3

Saifullah, M., McCullum, R., McCluskey, A., & Vuong, Q. (2019). Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 5(12). https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e03044

Santas, J., Carbo, R., Gordon, M., & Almajano, M. (2008). Comparison of the antioxidant activity of two Spanish onion varieties. Food Chemistry, 107(3), 1210-1216. https://doi.org/https://doi.org/10.1016/j.foodchem.2007.09.056

Scorrano, S., Lazzoi, M. R., Mergola, L., Di Bello, M. P., Del Sole, R., & Vasapollo, G. (2017). Anthocyanins profile by Q-TOF LC/MS in Myrtus communis berries from Salento Area. Food Analytical Methods, 10, 2404-2411. https://doi.org/https://doi.org/10.1007/s12161-017-0813-6

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/https://doi.org/10.5344/ajev.1965.16.3.144

Snoussi, A., Bouacida, S., Mitić, M., Arsić, B., Koubaier, H. B. H., Chouaibi, M.,…Stojanović, G. (2022). Thermal degradation kinetics of myrtle leaves ethanol extract (Myrtus communis L.): effect on phenolic compounds content and antioxidant activity. Journal of Food Measurement and Characterization, 16(3), 2119-2130. https://doi.org/https://doi.org/10.1007/s11694-022-01341-1

Sun, B., Ricardo-da-Silva, J. M., & Spranger, I. (1998). Critical factors of vanillin assay for catechins and proanthocyanidins. Journal of Agricultural and Food Chemistry, 46(10), 4267-4274. https://doi.org/https://doi.org/10.1021/jf980366j

Sun, Y., Zhang, Y., Xu, W., & Zheng, X. (2020). Analysis of the anthocyanin degradation in blue honeysuckle berry under microwave assisted foam-mat drying. Foods, 9(4), 397. https://doi.org/https://doi.org/10.3390/foods9040397

Taibi, A., Mokrani, A., Kadi, A., Bouherour, R., Guermi, N. E. Y., Teffane, M.,…Richard, T. (2024). Optimization of extraction conditions of phenolic compounds and antioxidant activity from myrtle (Myrtus communis L.) fruit. Chemistry & Biodiversity, e202301675. https://doi.org/https://doi.org/10.1002/cbdv.202301675

Talebianpoor, M. S., Talebianpoor, M. S., Mansourian, M., & Vafaiee‑Nejad, T. (2019). Antidiabetic activity of hydroalcoholic extract of Myrtus communis (Myrtle) fruits in streptozotocin‑induced and dexamethasone‑induced diabetic rats. Pharmacognosy Research, 11(2), ???. https://doi.org/https://doi.org/10.4103/pr.pr_160_18

Terpinc, P., Čeh, B., Ulrih, N. P., & Abramovič, H. (2012). Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Industrial Crops and Products, 39, 210-217. https://doi.org/https://doi.org/10.1016/j.indcrop.2012.02.023

Turkiewicz, I. P., Wojdyło, A., Lech, K., Tkacz, K., & Nowicka, P. (2019). Influence of different drying methods on the quality of Japanese quince fruit. LWT, 114, 108416. https://doi.org/https://doi.org/10.1016/j.lwt.2019.108416

Valadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea-Mondragón, H.,…Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science & Emerging Technologies, 41, 378-386. https://doi.org/https://doi.org/10.1016/j.ifset.2017.04.012

Wang, W.-D., & Xu, S.-Y. (2007). Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82(3), 271-275.

Wu, R., Frei, B., Kennedy, J. A., & Zhao, Y. (2010). Effects of refrigerated storage and processing technologies on the bioactive compounds and antioxidant capacities of ‘Marion’and ‘Evergreen’blackberries. LWT-Food Science and Technology, 43(8), 1253-1264. https://doi.org/https://doi.org/10.1016/j.lwt.2010.04.002

Yermakov, A., Arasimov, V., & Yarosh, N. (1987). Methods of biochemical analysis of plants. Agropromizdat, Leningrad, 122-142.

Yue, T., Xing, Y., Xu, Q., Yang, S., Xu, L., Wang, X., & Yang, P. (2021). Physical and chemical properties of purple cabbage as affected by drying conditions. International Journal of Food Properties, 24(1), 997-1010. https://doi.org/https://doi.org/10.1080/10942912.2021.1953070

Zubia, C. S., Babaran, G. M. O., Duque, S. M. M., Mopera, L. E., Flandez, L. E. L., Castillo-Israel, K. A. T., & Reginio Jr, F. C. (2023). Impact of drying on the bioactive compounds and antioxidant properties of bignay [Antidesma bunius (L.) Spreng.] pomace. Food Production, Processing and Nutrition, 5(1), 11. https://doi.org/https://doi.org/10.1186/s43014-022-00122-z

Published
2025/06/25
Section
Original research paper