POLYPHENOLIC COMPOSITION AND ANTIOXIDANT CAPACITY IN THE BRANCHES AND LEAVES OF SELECTED PRUNUS AND PYRUS SPECIES

  • Tatjana Jurić Facvulty of Agriculture, University of Novi Sad
  • Ružica Ždero Pavlović University of Novi Sad, Faculty of Agriculture, 21000 Novi Sad, Trg Dositeja Obradovića 8, Serbia
  • Milica Petković University of Novi Sad, Faculty of Agriculture, 21000 Novi Sad, Trg Dositeja Obradovića 8, Serbia
  • Jelena Radević University of Novi Sad, Faculty of Agriculture, 21000 Novi Sad, Trg Dositeja Obradovića 8, Serbia
  • Sara Hourani University of Novi Sad, Faculty of Technology Novi Sad, 21000 Novi Sad, Bulevar cara Lazara 1, Serbia
  • Boris M. Popović University of Novi Sad, Faculty of Agriculture, 21000 Novi Sad, Trg Dositeja Obradovića 8, Serbia
Keywords: plum, pear, by-products, antioxidant activity, polyphenols

Abstract


Plants of the genus Prunus and Pyrus have been valued and used for centuries due to their rich nutritional and therapeutic properties. The fruit itself is primarily consumed, while other parts of the plants are often overlooked despite their biological activity. In this study, branches and leaves of 10 plant species were investigated, including nine from the Prunus genus (wild P. avium, cultivated P. avium, P. mahaleb, P. fruticosa, P. cerasus, P. domestica, P. persica, P. cerasifera, P. cerasifera pissardii) and one from the Pyrus genus (P. communis). This study aimed to determine their polyphenolic composition and antioxidant capacity. The powders from branches and leaves of Prunus and Pyrus species were extracted in 70% ethanol using ultrasound. The quantitative analysis of polyphenols involved spectrophotometric determination of total phenolic content, total flavonoid content, total hydroxycinnamic acid content, and total anthocyanins content. The study evaluated the antioxidant capacity of branches and leaves using FRAP and DPPH assays. Pyrus communis demonstrated the highest total phenolic content in both branches (591.55 mg gallic acid equivalents/g dry weight) and leaves (685.62 mg GAE/g d. w.). P. communis also showed strong antioxidant potential in both assays. Among Prunus species, P. cerasifera pissardii demonstrates an exceptional antioxidant capacity, and a high amount of total anthocyanins, phenolic acids, and total phenols. This study provides a preliminary insight into the phytochemical profile of underutilized by-products, such as branches and leaves. These parts of plants can also generally be regarded as valuable resources of biologically significant compounds. Based on the results, we can conclude that by-products from Pyrus communis and Prunus cerasifera pissardii have the potential for wider chemical and biological investigations.

References

Agrawal, S., Kumar, A., Singh, A. K., Singh, H., Thareja, S., & Kumar, P. (2024). A comprehensive review on pharmacognosy, phytochemistry and pharmacological activities of 8 potent species of southeast Asia. Journal of Traditional Chinese Medicine = Chung i Tsa Chih Ying Wen Pan, 44(3), 620–628. https://doi.org/10.19852/J.CNKI.JTCM.2024.03.002

Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/ABIO.1996.0292

Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2020). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3), 3. https://doi.org/10.38212/2224-6614.2748

Chen, F. F., Sang, J., Zhang, Y., & Sang, J. (2018). Development of a green two-dimensional HPLC-DAD/ESI-MS method for the determination of anthocyanins from Prunus cerasifera var. atropurpurea leaf and improvement of their stability in energy drinks. International Journal of Food Science and Technology, 53(6), 1494–1502. https://doi.org/10.1111/IJFS.13730

Cheng, G. W. & Breen, P. J. (1991). Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of American Society for Horticultural Science, 116(5), 865–869.

Dziadek, K., Kopeć, A., & Czaplicki, S. (2018). The petioles and leaves of sweet cherry (Prunus avium L.) as a potential source of natural bioactive compounds. European Food Research and Technology, 244(8), 1415–1426. https://doi.org/ 10.1007/s00217-018-3055-y

Elsayed, N., Hammad, K. S. M., & Abd El-Salam, E. A. E. S. (2020). Plum (Prunus domestica L.) leaves extract as a natural antioxidant: Extraction process optimization and sunflower oil oxidative stability evaluation. Journal of Food Processing and Preservation, 44(10), e14813. https://doi.org/10.1111/JFPP.14813

Ghafoor, K., Choi, Y. H., Jeon, J. Y., & Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of Agricultural and Food Chemistry, 57(11), 4988–4994. https://doi.org/10.1021/jf9001439

Hong, S. Y., Lansky, E., Kang, S. S., & Yang, M. (2021). A review of pears (Pyrus spp.), ancient functional food for modern times. BMC Complementary Medicine and Therapies, 21(1), 1–14. https://doi.org/10.1186/s12906-021-03392-1

Hummer, K. E., & Janick, J. (2009). Rosaceae: Taxonomy, economic importance, genomics. Genetics and Genomics of Rosaceae, 1–17. https://doi.org/10.1007/978-0-387-77491-6_1

Hussain, A. I., Chatha, S. A. S., Noor, S., Khan, Z. A., Arshad, M. U., Rathore, H. A., & Sattar, M. Z. A. (2012). Effect of extraction techniques and solvent systems on the extraction of antioxidant components from peanut (Arachis hypogaea L.) Hulls. Food Analytical Methods, 5(4), 890–896. https://doi.org/10.1007/s12161-011-9325-y

Jesus, F., Gonçalves, A. C., Alves, G., & Silva, L. R. (2022). Health benefits of Prunus avium plant parts: An unexplored Source rich in phenolic compounds. Food Reviews International, 38(S1), 118–146. https://doi.org/10.1080/87559129.2020.1854781

Jiao, H., Guan, Q., Dong, R., Ran, K., Wang, H., Dong, X., & Wei, S. (2024). Metabolomics analysis of phenolic composition and content in five pear cultivars leaves. Plants, 13(17), 2513. https://doi.org/10.3390/PLANTS13172513/S1

Kolniak-Ostek, J. (2016). Chemical composition and antioxidant capacity of different anatomical parts of pear (Pyrus communis L.). Food Chemistry, 203, 491–497. https://doi.org/10.1016/J.FOODCHEM.2016.02.103

Liu, W., Nisar, M. F., & Wan, C. (2020). Characterization of phenolic constituents from Prunus cerasifera Ldb leaves. Journal of Chemistry, 2020(1), 5976090. https://doi.org/10.1155/2020/5976090

Maatallah, S., Dabbou, S., Castagna, A., Guizani, M., Hajlaoui, H., Ranieri, A. M., & Flamini, G. (2020). Prunus persica by-products: A source of minerals, phenols and volatile compounds. Scientia Horticulturae, 261, 109016. https://doi.org/10.1016/J.SCIENTA.2019.109016

Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809. https://doi.org/10.3390/MOLECULES25173809

Munekata, P. E. S., Yilmaz, B., Pateiro, M., Kumar, M., Domínguez, R., Shariati, M. A., … Lorenzo, J. M. (2023). Valorization of by-products from Prunus genus fruit processing: Opportunities and applications. Critical Reviews in Food Science and Nutrition, 63(25), 7795–7810. https://doi.org/10.1080/10408398.2022.2050350

Nowak, A., Czyzowska, A., Efenberger, M., & Krala, L. (2016). Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiology, 59, 142–149. https://doi.org/10.1016/J.FM.2016.06.004

Nunes, A. R., Gonçalves, A. C., Alves, G., Falcão, A., Garcia-Viguera, C., Moreno, D. A., & Silva, L. R. (2021). Valorisation of Prunus avium L. by-products: phenolic composition and effect on Caco-2 cells viability. Foods, 10(6), 1185. https://doi.org/10.3390/FOODS10061185

Oszmiański, J., & Wojdyło, A. (2014). Influence of cherry leaf-spot on changes in the content of phenolic compounds in sour cherry (Prunus cerasus L.) leaves. Physiological and Molecular Plant Pathology, 86, 28–34. https://doi.org/10.1016/J.PMPP.2014.03.002

Oszmiański, J., Wojdyło, A., Lamer-Zarawska, E., & Swiader, K. (2007). Antioxidant tannins from Rosaceae plant roots. Food Chemistry, 100(2), 579–583. https://doi.org/10.1016/J.FOODCHEM.2005.09.086

Polish Pharmacopoeia VI. (2002). Polish Pharmacopoeia VI. Warzsawa: PTF.

Pompeu, D. R., Pissard, A., Rogez, H., Dupont, P., Lateur, M., & Baeten, V. (2021). Estimation of phenolic compounds and antioxidant capacity in leaves of fruit species using near-infrared spectroscopy and a chemometric approach. BASE, 25(2), 109–119. https://doi.org/10.25518/1780-4507.19000

Poonam, V., Raunak, G., Kumar, G., Reddy L, C., Jain, R., Sharma, S., … Parmar, V. (2011). Chemical constituents of the genus Prunus and their medicinal properties. Current Medicinal Chemistry, 18(25), 3758–3824. https://doi.org/10.2174/092986711803414386

Popović, B. M., Blagojević, B., Kucharska, A. Z., Agić, D., Magazin, N., Milović, M., & Serra, A. T. (2021). Exploring fruits from genus Prunus as a source of potential pharmaceutical agents – In vitro and in silico study. Food Chemistry, 358, 129812. https://doi.org/10.1016/J.FOODCHEM.2021.129812

Singh, S., Verma, R., & Sharma, H. (2024). Exploring the therapeutic potential and bioactive compounds in Pyrus species. Pharmacological Research - Modern Chinese Medicine, 10, 100342. https://doi.org/10.1016/J.PRMCM.2023.100342

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1998). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

Telichowska, A., Kobus-Cisowska, J., Stuper-Szablewska, K., Ligaj, M., Tichoniuk, M., Szymanowska, D., & Szulc, P. (2020). Exploring antimicrobial and antioxidant properties of phytocomponents from different anatomical parts of Prunus padus L. International Journal of Food Properties, 23(1), 2097–2109. https://doi.org/10.1080/10942912.2020.1843486

Tomić, J., Štampar, F., Glišić, I., & Jakopič, J. (2019). Phytochemical assessment of plum (Prunus domestica L.) cultivars selected in Serbia. Food Chemistry, 299, 125113. https://doi.org/10.1016/J.FOODCHEM.2019.125113

Ueda, J. M., Pedrosa, M. C., Heleno, S. A., Carocho, M., Ferreira, I. C. F. R., & Barros, L. (2022). Food additives from fruit and vegetable by-products and bio-residues: A comprehensive review focused on sustainability. Sustainability, 14(9), 5212. https://doi.org/10.3390/SU14095212

Ullah, H., De Filippis, A., Khan, H., Xiao, J., & Daglia, M. (2020). An overview of the health benefits of Prunus species with special reference to metabolic syndrome risk factors. Food and Chemical Toxicology, 144, 111574. https://doi.org/10.1016/J.FCT.2020.111574

Ušjak, L. J., Milutinović, V. M., Đorđić Crnogorac, M. J., Stanojković, T. P., Niketić, M. S., Kukić-Marković, J. M., & Petrović, S. D. (2021). Barks of three wild pyrus taxa: Phenolic constituents, antioxidant activity, and in vitro and in silico investigations of α-amylase and α-glucosidase inhibition. Chemistry & Biodiversity, 18(10), e2100446–e2100446. https://doi.org/10.1002/CBDV.202100446

Willig, G., Brunissen, F., Brunois, F., Godon, B., Magro, C., Monteux, C., … Ioannou, I. (2022). Phenolic compounds extracted from cherry tree (Prunus avium) branches: Impact of the process on cosmetic properties. Antioxidants, 11(5), 813. https://doi.org/10.3390/ANTIOX11050813/S1

Wojdyło, A., Nowicka, P., Turkiewicz, I. P., & Tkacz, K. (2021). Profiling of polyphenols by LC-QTOF/ESI-MS, characteristics of nutritional compounds and in vitro effect on pancreatic lipase, α-glucosidase, α-amylase, cholinesterase and cyclooxygenase activities of sweet (Prunus avium) and sour (P. cerasus) cherries leaves and fruits. Industrial Crops and Products, 174, 114214. https://doi.org/10.1016/J.INDCROP.2021.114214

Wojdyło, A., Nowicka, P., Turkiewicz, I. P., Tkacz, K., & Hernandez, F. (2021). Comparison of bioactive compounds and health promoting properties of fruits and leaves of apple, pear and quince. Scientific Reports, 11(1). https://doi.org/10.1038/S41598-021-99293-X

Yüksekkaya, Ş., Başyiğit, B., Sağlam, H., Pekmez, H., Cansu, Ü., Karaaslan, A., & Karaaslan, M. (2021). Valorization of fruit processing by-products: free, esterified, and insoluble bound phytochemical extraction from cherry (Prunus avium) tissues and their biological activities. Journal of Food Measurement and Characterization, 15(2), 1092–1107. https://doi.org/10.1007/S11694-020-00698-5/FIGURES/6

Zahid, K. (2019). Comparative evaluation of total phenolics, total flavonoids content and antiradical activity in six selected species of family rosaceae using spectroscopic method. American Journal of Biomedical Science & Research, 3(4), 352–357. https://doi.org/10.34297/AJBSR.2019.03.000693

Zymonė, K., Liaudanskas, M., Lanauskas, J., Nagelytė, M., & Janulis, V. (2024). Variability in the qualitative and quantitative composition of phenolic compounds and the in vitro antioxidant activity of sour cherry (Prunus cerasus L.) leaves. Antioxidants, 13(5), 553. https://doi.org/10.3390/ANTIOX13050553

Published
2025/05/14
Section
Original research paper