REMOVAL OF SODIUM, POTASSIUM AND CALCIUM METAL IONS FROM ALKALIZED SUGAR JUICE USING SUGAR BEET PULP: A FIXED-BED COLUMN BIOSORPTION STUDY
Abstract
This study investigates the possibility of applying continuous biosorption as an additional step in the sugar juice purification process to reduce the content of metal ions in alkalized juice. The response surface methodology (RSM) was used to examine the influence of the biosorption parameters: bed height of the biosorbent in the column, flow rate of the alkalized juice, and granulation of the biosorbent on molassigenic metal ions (K+, Na+ and Ca2+) removal efficiency. At a flow rate of 4.75 mL/min, a biosorbent bed height of 15 cm, and biosorbent granulation <1 cm, the achieved reduction of Na+ and Ca2+ ions in the alkalized juice was 74.19% and 62.78%, respectively. Slightly lower removal efficiency of K+ ions (50.69%) was achieved at a flow rate of 6.75 mL/min, a bed height of 15 cm, and biosorbent granulation >5 cm. Therefore, the biosorption process is highlighted as a desirable process in the thin juice purification stage. By repurposing the by-product of the sugar industry, the concept of circular economy and zero waste emission is achieved. An additional step in the juice purification process in the sugar industry results in higher juice purity, thereby enabling greater sugar extraction and yield.
References
Acheampong, M.A., Pakshirajan, K., Annachhatre, A.P., & Lens, P.N. (2013). Removal of Cu (II) by biosorption onto coconut shell in fixed-bed column systems. Journal of Industrial and Engineering Chemistry, 19(3), 841-848. https://doi.org/10.1016/j.jiec.2012.10.029
Arslanoglu, H., & Tumen, F. (2012). A study on cations and color removal from thin sugar juice by modified sugar beet pulp. Journal of Food Science and Technology, 49 (3), 319–327. https://doi.org/10.1007/s13197-011-0288-1
Blagojev, N. (2019). Modelling and optimization of continuous biosorption of heavy metal ions from water (PhD thesis). Faculty of Technology. University of Novi Sad.
Blagojev, N., Kukić, D., Vasić, V., Šćiban, M., Prodanović, J., & Bera, O. (2019). A new approach for modelling and optimization of Cu (II) biosorption from aqueous solutions using sugar beet shreds in a fixed-bed column. Journal of Hazardous Materials, 363, 366-375. https://doi.org/10.1016/j.jhazmat.2018.09.068
Castro, L., Blázquez, M.L., González, F., Muñoz, J.A., & Ballester, A. (2017). Biosorption of Zn(II) from industrial effluents using sugar beet pulp and F. Vesiculosus: from laboratory tests to a pilot approach. Science of the Total Environment, 598, 856–866. https://doi.org/10.1016/j.scitotenv.2017.04.138
Cazón, J.P., Viera, M., Donati, E., & Guibal, E. (2013). Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes. Journal of Environmental Management, 129, 423-434. https://doi.org/10.1016/j.jenvman.2013.07.011
Ciobanu, A. A., Lucaci, A. R., & Bulgariu, L. (2024). Efficient metal ions biosorption on red and green algae biomass: Isotherm, kinetic and thermodynamic study. Journal of Applied Phycology, (36), 3809-3827. https://doi.org/10.1007/s10811-024-03332-9
do Nascimento, J.M., Otaviano, J.J.S., de Sousa, H.S., de Oliveira, J.D., & Hung, Y.T. (2024). Use of biosorption of agro-industrial wastes and microorganisms for removal of potentially toxic metals. In L. K.Wang, Y-T.Hung, M-H.S. Wang, & J. P. Chen, (Eds.) Control of heavy metals in the environment (pp. 400-457). Boca Raton, USA: CRC Press.
El Messaoudi, N., El Khomri, M., Dbik, A., Bentahar, S., Lacherai, A., & Bakiz, B. (2016). Biosorption of Congo red in a fixed-bed column from aqueous solution using jujube shell: Experimental and mathematical modeling. Journal of Environmental Chemical Engineering, 4(4), 3848-3855. https://doi.org/10.1016/j.jece.2016.08.027
Gadd, G.M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84 (1), 13-28. https://doi.org/10.1002/jctb.1999
Gupta, S., Prajapati, A., & Kumar, A. (2025). Removal of anionic dyes by magnetic modified A. barbadensis Miller residue leaves as a bio-adsorbent using biosorption process. Green Technologies and Sustainability, 3 (3), 100196. https://doi.org/10.1016/j.grets.2025.100196
Hasan, S.H., Ranjan, D., & Talat, M. (2010). Agro-industrial waste ‘wheat bran’for the biosorptive remediation of selenium through continuous up-flow fixed-bed column. Journal of Hazardous Materials, 181 (1-3), 1134-1142. https://doi.org/10.1016/j.jhazmat.2010.05.133
John, M. M., Benettayeb, A., Belkacem, M., Mitchel, C. R., Brahim, M. H., Benettayeb, I., Haddou, B., Al-Farraj, A., Ali Alkahtane, A., Ghosh, S., Chia, C., H., Sillanpaa, M., Baigenzhenov, O., & Hosseini-Bandegharaei, A. (2024). An overview on the key advantages and limitations of batch and dynamic modes of biosorption of metal ions. Chemosphere, 357, 142051. https://doi.org/10.1016/j.chemosphere.2024.142051
Kojić, P.S., Vučurović, V.V., Lukić, N.L., Karadžić, M.Ž., & Popović, S.S. (2017). Continuous adsorption of methylene blue dye on the maize stem ground tissue. Acta Periodica Technologica, 48, 127-139. https://doi.org/10.2298/APT1748127K
Kukić, D., Šćiban, M., Brdar, M., Vasić, V., Takači, A., Antov, M., & Prodanović, J. (2023). Sugar beet lignocellulose waste as biosorbents: surface functionality, equilibrium studies and artificial neural network modeling. International Journal of Environmental Science and Technology, 20 (3), 2503-2516. https://doi.org/10.1007/s13762-022-04140-9
Kulkarni, V. V., Golder, A. K., & Ghosh, P. K. (2018). Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation. Journal of Hazardous Materials, 341, 207-217. https://doi.org/10.1016/j.jhazmat.2017.07.043
Kulkarni, R.M., Shetty, K.V. & Srinikethan, G. (2024). Biosorption study on Ni (II) and Cd (II) removal in a packed bed column using brewery sludge pellets. Biomass Conversion and Biorefinery, 14(13), 14291-14302. https://doi.org/10.1007/s13399-022-03623-6
Lodeiro, P., Herrero, R., & de Vicente, M.S. (2006). The use of protonated Sargassum muticum as biosorbent for cadmium removal in a fixed-bed column. Journal of Hazardous Materials, 137 (1), 244-253. https://doi.org/10.1016/j.jhazmat.2006.01.061
Maravić, N., Peić Tukuljac, L., Šereš, Z., Krulj, J., Kojić, J., Bodroža-Solarov, M. (2024). Postupak biosorpcije jona alkalnih i zemnoalkalnih metala iz alkalisanog soka nemodifikovanim presovanim ekstrahovanim rezancima šećerne repe.Patent. Tehnološki fakultet Novi Sad. Registarski broj patenta 65786.
Marín, A.P., Aguilar, M.I., Meseguer, V.F., Ortuno, J.F., Sáez, J., & Lloréns, M. (2009). Biosorption of chromium (III) by orange (Citrus cinensis) waste: Batch and continuous studies. Chemical Engineering Journal, 155 (1-2), 199-206. https://doi.org/10.1016/j.cej.2009.07.034
Muhamad, H., Doan, H., & Lohi, A. (2010). Batch and continuous fixed-bed column biosorption of Cd2+ and Cu2+. Chemical Engineering Journal, 158 (3), 369-377. https://doi.org/10.1016/j.cej.2009.12.042
Nathan, R. J., Jain, A. K., & Rosengren, R. J. (2022). Biosorption of heavy metals from water: mechanism, critical evaluation and translatability of methodology. Environmental Technology Reviews, 11 (1), 91-117. https://doi.org/10.1080/21622515.2022.2078232
Parades-Aguilar, J., Agustin-Salazar, S., Cerruti, P., Ambrogi, V., Calderon, K., Gamez-Meza, N., & Medina-Juarez, L.A., (2025). Agro-industrial wastes and their application perspectives in metal decontamination using biocomposites and bacterial biomass: a review. World Journal of Microbiology and Biotechnology, 41 (1), 16. https://doi.org/10.1007/s11274-024-04227-0
Patel, H. (2019). Fixed-bed column adsorption study: a comprehensive review. Applied Water Science, 9(3), 45. https://doi.org/10.1007/s13201-019-0927-7
Peić Tukuljac, L., Krulj, J., Kojić, J., Šurlan, J., Bodroža-Solarov, M., Miljević, B., Šereš, Z., & Maravić, N. (2023). Biosorption of Na+, K+ and Ca2+ from alkalized sugar juice by unmodified pressed sugar beet pulp in closed-loop column system. Sugar Tech, 25(4), 766-776. https://doi.org/10.1007/s12355-022-01234-z
Peić Tukuljac, L., Krulj, J., Pezo, L., Maravić, N., Kojić, J., & Šereš, Z. (2022). Utilization of sugar beet pulp as biosorbent for molassigenic metal ions: kinetic study of batch biosorption. Periodica Polytechnica-Chemical Engineering, 66 (4), 629-640. https://doi.org/10.3311/PPch.19783
Perović, L. (2024). Sugar beet polysaccharides application in reduction of non-sucrose substances from the alkalized juice of sugar industry (PhD Thesis). University of Novi Sad, Faculty of Technology, Novi Sad, Serbia.
Pham, V. H. T., Kim, J., Chang, S., & Chung, W. (2022). Bacterial biosorbents, an efficient heavy metals green clean-up strategy: prospects, challenges, and opportunities. Microorganisms, 10 (3), 610. https://doi.org/10.3390/microorganisms10030610
Pilli, S.R., Goud, V.V., & Mohanty, K. (2012). Biosorption of Cr (VI) on immobilized Hydrilla verticillata in a continuous up-flow packed bed: prediction of kinetic parameters and breakthrough curves. Desalination and Water Treatment, 50 (1-3), 115-124. https://doi.org/10.1080/19443994.2012.708555
Rajeswari, M., Agrawal, P., Pavithra, S., Priya, Sandhya, G.R., & Pavithra, G.M. (2013). Continuous biosorption of cadmium by Moringa olefera in a packed column. Biotechnology and Bioprocess Engineering, 18, 321-325.
https://doi.org/10.1007/s12257-012-0424-4
Reddad, Z., C. Gerente, Z. Andres, M.C. Ralet, J.F. Thibault, & P.L. Cloirec. (2002). Ni(II) and Cu(II) binding properties of native and modified sugar beet pulp. Carbohydrate Polymers 49 (1), 23–31. https://doi.org/10.1016/S0144-8617(01)00301-0
Riazi, M., Keshtkar, A.R., & Moosavian, M.A. (2016). Biosorption of Th (IV) in a fixed-bed column by Ca-pretreated Cystoseira indica. Journal of Environmental Chemical Engineering, 4 (2), 1890-1898. https://doi.org/10.1016/j.jece.2016.03.017
Romano, M.S., Corne, V., Azario, R.R., Centurión, E. & García, M.D.C. (2025). Valorization of agroindustrial waste as biosorbent of lead (ii) in solution and its reuse in the manufacture of building bricks. Recent Progress in Materials, 7 (1), 1-16. http://dx.doi.org/10.21926/rpm.2501002
Šćiban, M., & Klašnja, M. (2011). Tehnologija vode i otpadnih voda. Univerzitet u Novom Sadu. Tehnološki fakutet Novi Sad.
Sen, S., Nandi, S., & Dutta, S. (2018). Application of RSM and ANN for optimization and modeling of biosorption of chromium (VI) using cyanobacterial biomass. Applied Water Science, 8, 1-12. https://doi.org/10.1007/s13201-018-0790-y
Singh, R., Das, R., Sangwan, S., Rohatgi, B., Khanam, R., Peera, S. P. G., Das, S., Lyngdoh, Y., A., Langyan, S., Shukla, A., Shrivastava, M., & Misra, S. (2021). Utilisation of agro-industrial waste for sustainable green production: a review. Environmental Sustainability, 4 (4), 619-636. https://doi.org/10.1007/s42398-021-00200-x
SRPS EN ISO 6869. (2008). Animal feeding stuffs - Determination of the contents of calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc - Method using atomic absorption spectrometry.
Varian SpectrAA-10/20 Analytical methods. (1989). Varian Techtron Pty Limited, Australia.
Xie, S. (2024). Biosorption of heavy metal ions from contaminated wastewater: an eco-friendly approach. Green Chemistry Letters and Reviews, 17 (1), 2357213. https://doi.org/10.1080/17518253.2024.2357213
Yaashikaa, P.R., Palanivelu, J. & Hemavathy, R.V. (2024). Sustainable approaches for removing toxic heavy metal from contaminated water: A comprehensive review of bioremediation and biosorption techniques. Chemosphere, 357, 141933. https://doi.org/10.1016/j.chemosphere.2024.141933
Zhao, B., Shang, Y., Xiao, W., Dou, C., & Han, R. (2014). Adsorption of Congo red from solution using cationic surfactant modified wheat straw in column model. Journal of Environmental Chemical Engineering, 2 (1), 40-45. https://doi.org/10.1016/j.jece.2013.11.025
Copyright (c) 2025 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
