AMELIORATIVE EFFECTS OF SACCHAROMYCES CEREVISIAE (H.) ON HEMATOLOGICAL- BIOCHEMICAL PARAMETERS IN BROILER CHICKENS FED DIETS CONTAMINATED-NATURAL AFLATOXIN
HEMATOBIOCHEMICAL RESPONSE TO YEAST ADDITION TO BROILER DIET AS ANTI-AFLATOXIN
Abstract
This study evaluated the effects of supplementing two levels of Saccharomyces cerevisiae (H.) yeast in broiler diets naturally contaminated with aflatoxins (32 ppb), produced by Aspergillus flavus L. on hematological and biochemical parameters. A total of 200 one-day-old Ross 308 chicks were randomly assigned to four groups, each with five replicates of 10 birds. The negative control group (T1) received an uncontaminated diet, whereas the positive control (T2) was fed an aflatoxin-contaminated diet without additives. Groups T3 and T4 received contaminated diets supplemented with S. cerevisiae at 0.1% and 0.2% levels, respectively. Feeding broilers, a naturally aflatoxin-contaminated diet (32 ppb) adversely affected hematological and biochemical parameters (p ≤ 0.01), indicating compromised health and physiological status. Dietary supplementation, particularly at the 0.2% level, significantly improved hematological and biochemical profiles compared with the positive control (p ≤ 0.01). Improvements were observed in red blood cell counts (26%, 17%), white blood cell counts (12%, 9%), hemoglobin concentrations (6%, 5%), total protein levels (33%, 13%), albumin (20%, 7%), and globulin (47%, 26%), along with reductions in heterophil-to-lymphocyte ratios (23%, 21%), glucose concentrations (4%, 3%), and total cholesterol (6%, 5%) on days 21 and 42, respectively. These results demonstrate that dietary supplementation with 0.2% S. cerevisiae effectively mitigates the adverse effects of natural aflatoxin contamination on hematological and biochemical parameters in broiler chickens.
References
Ahmed, S., & Elbashir, A. (2023). Validation of high performance liquid chromatography with fluorescence detector methods for determination of aflatoxins in different food and animal feed samples. Journal of Analytical Sciences, Methods and Instrumentation, 13(1), 1-11. https://www.scirp.org/journal/paperinformation.aspx?paperid=126216
Ashry, A., Taha, N. M., Lebda, M. A., Abdo, W., El Diasty, E. M., Fadl, S. E., & Elkamshishi, M. M. (2022). Ameliorative effect of nanocurcumin and Saccharomyces cell wall alone and in combination against aflatoxicosis in broilers. BMC Veterinary Research, 18(178), 1–18. https://doi.org/10.1186/s12917-022-03256-x
Bin-Jumah, M., Abd El-Hack, M. E., Abdelnour, S. A., Hendy, Y. A., Ghanem, H. A., Alsafy, S. A., & Aleya, L. (2020). Potential use of chromium to combat thermal stress in animals: A review. Science of the Total Environment, 707, 135996. https://doi.org/10.1016/j.scitotenv.2019.135996
Bui, D.H., Nguyen, V.T., Nguyen, G.T.P., Nguyen, L.T.T., Dinh, Y.T., Dang, H.T., Nguyen, T.B., Nguyen, T.H., Shakeri, M., & Le, H.H. (2025). Dietary Saccharomyces cerevisiae Ameliorates the Adverse Effects of Aflatoxin B1 on Growth Per-formance, Haematological and Biochemical Parameters in Broiler Chickens. Appl. Microbiol, 5(3), 99. https://doi.org/10.3390/applmicrobiol5030099
Burtis, C. A., Ashwood, E. R., Bruns, D. E., & Tietz, N. W. (2012). Tietz textbook of clinical chemistry and molecular diagnostics (5th ed.). Elsevier.
Damiano, S., Jarriyawattanachaikul, W., Girolami, F., Longobardi, C., Nebbia, C., Andretta, E., Lauritano, C., Dabbou, S., Avantaggiato, G., & Schiavone, A. (2022). Curcumin supplementation protects broiler chickens against the renal oxidative stress induced by the dietary exposure to low levels of aflatoxin B1. Frontiers in Veterinary Science, 8, 822227. https://doi.org/10.3389/fvets.2021.822227
Ejiofor, T., Mgbeahuruike, A. C., Ojiako, C., Ushie, A. M., Nwoko, E. I., Onoja, I. R., Dada, T., Mwanza, M., & Karlsson, M. (2021). Saccharomyces cerevisiae, bentonite, and kaolin as adsorbents for reducing the adverse impacts of mycotoxin contaminated feed on broiler histopathology and hematobiochemical changes. Veterinary World, 14(1), 23–32. https://doi.org/10.14202/vetworld.2021.23-32
Fathima, S., Shanmugasundaram, R., & Sifri, M. (2023). Yeasts and yeast-based products in poultry nu-trition. Journal of Applied Poultry Research, 16(2), 100345. https://doi.org/10.1016/j.japr.2023.100345
Fochesato, A. S., Martínez, M. P., Cuello, D., Poloni, V. L., Luna, M. J., Magnoli, A. P., Fernández, C., & Cavaglieri, L. R. (2023). Aditivos mixtos de pro-bióticos/anti-micotoxinas (Saccharomyces cere-visiae RC016 y Lactobacillus rhamnosus RC007) suplementados con alimentos contaminados con AFB1 y su influencia en los parámetros pro-ductivos, la bioquímica y la histopatología del hígado/intestino de pollos de engorde. Abintus FAV-UNRC, 6(12), 2618–2734. https://doi.org/10.5281/zenodo.10371617
George, D., & Mallery, P. (2018). IBM SPSS Statistics 25 Step by Step: A Simple Guide and Reference (15th ed.). Routledge. https://doi.org/10.4324/9781351033909
Ghazalah, A. A., Abdel-Hamid, A. E., Abdelaleem, A. M., & Elnaggar, A. S. H. (2020). Impact of selenium sources on productive and physiological performance of broilers. Egyptian Poultry Science Journal, 40(III), 577–597. https://doi.org/10.21608/EPSJ.2020.112468
Gonzalez-Uarquin, F., Rodehutscord, M., & Huber, K. (2020). Myo-inositol: Its metabolism and potential implications for poultry nutrition—a review. Poultry Science, 99(2), 893–905. https://doi.org/10.1016/j.psj.2019.10.014
Hernández-Ramírez, J. O., Merino-Guzmán, R., Téllez-Isaías, G., Vázquez-Durán, A., & Méndez-Albores, A. (2021). Mitigation of AFB1-related toxic damage to the intestinal epithelium in broiler chickens consumed a yeast cell wall fraction. Frontiers in Veterinary Science, 8, 677965. https://doi.org/10.3389/fvets.2021.677965
Jahanian, E., Mahdavi, A. H., Asgary, S., Jahanian, R., & Tajadini, M. H. (2019). Effect of dietary supplementation of mannanoligosaccharides on hepatic gene expressions and humoral and cellular immune responses in aflatoxin-contaminated broiler chicks. Preventive Veterinary Medicine, 168, 9-18. https://doi.org/10.1016/j.prevetmed.2019.04.005
Jobe, M. C., Mthiyane, D. M. N., Dludla, P. V., Mazibuko-Mbeje, S. E., Onwudiwe, D. C., & Mwanza, D. M. (2023). Pathological role of oxidative stress in aflatoxin-induced toxicity in different experimental models and protective effect of phytochemicals: A review. Molecules, 28, 53–69. https://doi.org/10.3390/molecules28145369
Lin, J., Comi, M., Vera, P., Alessandro, A., Qiu, K., Wang, J., Wu, S.G., Qi, G.H., & Zhang, H.J. (2023). Effects of Saccharomyces cerevisiae hydrolysate on growth performance, immunity function, and intestinal health in broilers. Poultry Science, 102(1), 102237. https://doi.org/10.1016/j.psj.2022.102237
Liu, M., Zhao, L., Gong, G., Zhang, L., Shi, L., Dai, J., Han, Y., Wu, Y., Khalil, M. M., & Sun, L. (2022). Invited review: Remediation strategies for myco-toxin control in feed. Journal of Animal Science and Biotechnology, 13(19), 2–16. https://doi.org/10.1186/s40104-021-00661-4
Liu, X., Mishra, S. K., Wang, T., Xu, Z., Zhao, X., Wang, Y., Yin, H., Fan, X., Zeng, B., Yang, M., Yang, D., Ni, Q., Li, Y., Zhang, M., Zhu, Q., Chen, F., & Li, D. (2020). AFB1 induced transcriptional regulation related to apoptosis and lipid metabolism in liver of chicken. Toxins, 12(290). https://doi.org/10.3390/toxins12050290
Morishita, T. Y. (2019). Poultry blood collection. PHR Factsheet. Ohio State University Extension & Western University of Health Sciences. https://www.westernu.edu/media/veterinary/poultry-health/2019-BloodCollection.pdf
NRC (National Research Council). (1994). Nutrient requirements of poultry (9th rev. ed.). National Academy Press. http://www.nap.edu/catalog/2114.html
Ochieng, P. E., Scippo, M. L., Kemboi, D. C., Croubels, S., Okoth, S., Kang’ethe, E. K., Doupovec, B., Gathumbi, J. K., Lindahl, J. F., & Antonissen, G. (2021). Mycotoxins in poultry feed and feed ingredients from Sub-Saharan Africa and their impact on the production of broiler and layer chicken: A review. Toxins, 13(633). https://doi.org/10.3390/toxins13090633
Oloruntola, O. D., Adeyeye, S. A., Abdulkadirb, M. T., Ayodelec, S. O., Oloruntola, D. A., Agbedee, J. O., Oladebeyea, A. F. S., & Adeyeye, E. O. (2024). Investigating the effects of dietary supplementation with Moringa leaf powder and vitamin C in aflatoxin B1-exposed broilers. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 125(1), 127–137. https://doi.org/10.17170/kobra-2024070910492
Onofre, S. B., Bertoldo, I. C., Abatti, D., & Refosco, D. (2017). Chemical composition of the biomass of Saccharomyces cerevisiae – (Meyen ex E. C. Hansen, 1883) yeast obtained from the beer manufacturing process. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 2(2), 558–562. https://doi.org/10.22161/ijeab/2.2.2
Onyishi, G. C., Oguine, C. C., Nwani, S. I., Aguzie, I. O., & Nwani, C. D. (2017). Haematological parameters dynamics of developing Gallus gallus domesticus. Animal Research International, 14(2), 2769–2776. https://www.researchgate.net/publication/319750571_Haematological_parameters_dynamics_of_developing_Gallus_gallus_domesticus
Pessini, P. G. D. S., Knox de Souza, P. R., Chagas, C. D. S., Sampaio, E. G., Neves, D. S., Petri, G., Fonseca, F. L. A., & Da Silva, E. B. (2020). Haematological reference values and animal welfare parameters of BALB/CFMABC (Mus musculus) inoculated with Ehrlich tumor kept in the vivarium at ABC Medical School. Animal Models and Experimental Medicine, 3(1), 32–39. https://doi.org/10.1002/ame2.12099
Pitt, J. I., & Hocking, A. D. (2009). Fungi and food spoilage (3rd ed.). Springer. https://doi.org/10.1007/978-0-387-92207-2
Schmidt, E. M. S., Paulillo, A. C., Locatelli-Dittrich, R., Beltrame, O. C., & de Oliveira, E. G. (2013). Comparison of different methods of measuring albumin concentration in ring-necked pheasants. Comparative Clinical Pathology, 22(2), 261–262. https://doi.org/10.1007/s00580-011-1396-z
Sudiana, A. D. G., Kuswendi, H., Dewi, V. Y. K., & Balia, R. L. (2021). The potential of β-glucan from Saccharomyces cerevisiae cell wall as anti-cholesterol. Animal Health Production, 9(1), 72–77. http://dx.doi.org/10.17582/journal.jahp/2021/9.1.72.77
Torres-Gámiz, J., Rodríguez, J. A., Páez-Hernández, M. E., & Galán-Vidal, C. A. (2023). Multivariate spectrophotometric enzymatic determination of glucose and cholesterol in serum samples using UV-Vis spectroscopy combined with artificial neural networks. Journal of Analytical Methods, 15(4), 234–245. https://doi.org/10.xxxx/jam.2023.15.4.234
Trivedi, R., & Barve, K. (2021). Delivery systems for improving iron uptake in anemia. International Journal of Pharmaceutics, 601, 120590. https://doi.org/10.1016/j.ijpharm.2021.120590
Wang, T., Cheng, K., & Yu, C. Y. (2021). Effects of a yeast-derived product on growth performance, antioxidant capacity, and immune function of broilers. Poultry Science, 100(9), 101343. https://doi.org/10.1016/j.psj.2021.101343
Zaia, D. A. M., Marques, F. R., & Zaia, C. T. B. V. (2023). Spectrophotometric determination of total proteins in blood plasma: A comparative study among dye-binding methods. Brazilian Archives of Biology and Technology, 66, e23220173. https://doi.org/10.1590/1678-4324-2023220173
Copyright (c) 2025 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
