KONJAC GLUCOMANNAN AS FOAM STABILIZER IN POLYHERBAL DRINK POWDER VIA FOAM MAT DRYING
Sažetak
The polyherbal drink contains polyphenol compounds that have many health benefits. The water extract of polyherbal drinks in the liquid phase has a short shelf life. Further powder processing is desirable by simple methods such as foam mat drying, that depend on the foam stabilizer. Konjac glucomannan (KGM) solution has the potential as a foam stabilizer. This study investigated the effect of konjac glucomannan concentrations (0-1%) as a foam stabilizer on polyherbal drink powder's physicochemical properties and antioxidant activity in foam mat drying. The polyherbal drink foam was prepared by adding lecithin at 10% w/w as a foaming agent and KGM as a foam stabilizer. The foam characters e.g Foam Expansion (FE), Air Fraction (AF), and Foam Stability (FS), and the powder characters, including physical and chemical (Total phenolic content (TPC) and Total Flavonoid content (TFC)), were investigated. Moreover, the powder's antioxidant activity was also analyzed using The DPPH free radical scavenging and Ferric Reduction Antioxidant Power (FRAP) methods. The results showed that applying KGM improved the stability of foam at a concentration of 0.5% upwards (FS>92.32%; FE>1.51). However, the physical properties of the powder were unchanged. All powders showed constant TPC (1.16- 1.36 mg GAE/g) and TFC (13.21- 28.92 mg QE/g). In addition, all powders revealed similar antioxidant activity both in DPPH free radical scavenging (231-245 mM TE/g) and FRAP (141-154 mM TE/g). The utilization of KGM as a foam stabilizer in the foam mat drying process demonstrated improved foam stability, particularly when used at a concentration of 0.5%.
Reference
Aveyard, R., Binks, B. P., Clint, J. H., & Fletcher, P. D. I. (1999). Foams and Emulsion: Their Stability and Breakdown by Solid Particle and Liquid Droplets. Surfactant Science Group, School of Chemistry, University of Hull.
Behera, S. S., & Ray, R. C. (2016). International Journal of Biological Macromolecules Konjac glucomannan , a promising polysaccharide of Amorphophallus konjac K . Koch in health care. International Journal of Biological Macromolecules, 92, 942–956. https://doi.org/10.1016/j.ijbiomac.2016.07.098
Cai, Y. Z., & Corke, H. (2000). Production and properties of spray-dried Amaranthus betacyanin pigments. JFS: Sensory and Nutritive Qualities of Food, 65(6), 1248–1252. https://doi.org/10.1038/192943a0
Chaux-Gutiérrez, A. M., Santos, A. B., Granda-Restrepo, D. M., & Mauro, M. A. (2017). Foam mat drying of mango: Effect of processing parameters on the drying kinetic and product quality. Drying Technology, 35(5), 631–641. https://doi.org/10.1080/07373937.2016.1201486
Dav, V., & Mccarthy, S. P. (1997). Review of Konjac Glucomannan. Journal of Environmental Polymer Degradation, 5(4), 237–241.
Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols - A review. Trends in Food Science and Technology, 21(10), 510–523. https://doi.org/10.1016/j.tifs.2010.08.003
Guazi, J. S., Lago-Vanzela, E. S., & Conti-Silva, A. C. (2019). Development of smoothies from dehydrated products of strawberry and banana pulps obtained through foam-mat drying. International Journal of Food Science and Technology, 54(1), 54–61. https://doi.org/10.1111/ijfs.13900
Hamad, A., & Hartanti, D. (2025). Multi-Response Optimization of Antioxidant and Total Phenols-Flavonoids Content of Polyherbal Extract Drink from Turmeric, Java Tea, and Seed-under-leaf. BioResources, 20(1), 1676–1690. https://doi.org/DOI: 10.15376/biores.20.1.1676-1690
Hamad, A., Kinanti, Z., Pomsang, P., Naveed, M., & Hartanti, D. (2025). Optimizing Konjac Glucomannan Hydrolysate (KGMH) as a Natural Binder in Foam Mat Drying for Functional Herbal Powder Drink. Research in Chemical Engineering (RiCE), 4(1), 18–29. https://doi.org/10.30595/rice.v4i1.266
Hamad, A., Putra, D. D., & Hartanti, D. (2025). Effect of foam stabilizer type on the antioxidant activity of polyherbal drink powder using Foam mat Drying method. AIP Conference Proceedings, 3234(1). https://doi.org/10.1063/5.0259933
Hamad, A., Suriyarak, S., Devahastin, S., & Borompichaichartkul, C. (2020). A novel approach to develop spray-dried encapsulated curcumin powder from oil-in-water emulsions stabilized by combined surfactants and chitosan. Journal of Food Science, 85(11), 3874–3884. https://doi.org/10.1111/1750-3841.15488
Hamad, A., Suriyarak, S., Devahastin, S., Chiewchan, N., & Borompichaichartkul, C. (2025). Enhancement of encapsulation efficiency and in vitro bioaccessibility of spray-dried curcumin microcapsules by selected bio-coating materials. Journal of Food Science, 90(3), 1–15. https://doi.org/10.1111/1750-3841.70085
Hardy, Z., & Jideani, V. A. (2017). Foam-mat drying technology: A review. Critical Reviews in Food Science and Nutrition, 57(12), 2560–2572. https://doi.org/10.1080/10408398.2015.1020359
Hartanti, D., Chatsumpun, N., & Kitphati, W. (2023). The standardized Jamu pahitan , an Indonesian antidiabetic formulation , stimulating the glucose uptake and insulin secretion in the in-vitro models. Heliyon, 9(3), e14018. https://doi.org/10.1016/j.heliyon.2023.e14018
Hartanti, D., & Hamad, A. (2023a). Antioxidant properties and interaction effects of a novel polyherbal formulation. Current Trends in Biotechnology and Pharmacy, 17, 28–33. https://doi.org/10.5530/ctbp.2023.4s.87
Hartanti, D., & Hamad, A. (2023b). The effect of brewing time on the antioxidant properties and consumer’s preference of green tea and jasmine tea. Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering, 6(2), 106–115.
Hu, Y., Liang, H., Xu, W., Wang, Y., An, Y., Yan, X., Ye, S., Huang, Q., Liu, J., & Li, B. (2016). Synergistic effects of small amounts of konjac glucomannan on functional properties of egg white protein. Food Hydrocolloids, 52, 213–220. https://doi.org/10.1016/j.foodhyd.2015.07.001
Ivanović, M., Makoter, K., & Razboršek, M. I. (2021). Comparative study of chemical composition and antioxidant activity of essential oils and crude extracts of four characteristic Zingiberaceae herbs. Plants (Basel), 10(3), 501. https://doi.org/10.3390/plants10030501
Jovanovic, S. V., Steenken, S., Tosic, M., Marjanovic, B., & Simic, M. G. (1994). Flavonoids as Antioxidants. Journal of the American Chemical Society, 116(11), 4846–4851. https://doi.org/10.1021/ja00090a032
Kanha, N., Regenstein, J. M., & Laokuldilok, T. (2020). Optimization of process parameters for foam mat drying of black rice bran anthocyanin and comparison with spray- and freeze-dried powders. Drying Technology, 1–14. https://doi.org/10.1080/07373937.2020.1819824
Kharat, M., & McClements, D. J. (2019). Recent advances in colloidal delivery systems for nutraceuticals: A case study – Delivery by Design of curcumin. Journal of Colloid and Interface Science, 557, 506–518. https://doi.org/10.1016/j.jcis.2019.09.045
Koç, G. Ç., Tekgül, Y., Yüksel, A. N., Khanashyam, A. C., Kothakota, A., & Pandiselvam, R. (2022). Recent development in foam-mat drying process : Influence of foaming agents and foam properties on powder properties. Journal of Surfactants and Detergents, 25, 539–557. https://doi.org/10.1002/jsde.12608
Kudra, T., & Ratti, C. (2006). Foam-mat drying : Energy and cost analyses. Canadian Biosystems Engineering, 48(3), 27–32.
Leuangsukrerk, M., Phupoksakul, T., Tananuwong, K., Borompichaichartkul, C., & Janjarasskul, T. (2014). Properties of konjac glucomannan-whey protein isolate blend films. LWT - Food Science and Technology, 59(1), 94–100. https://doi.org/10.1016/j.lwt.2014.05.029
Ni, X., Wang, K., Wu, K., Corke, H., Nishinari, K., & Jiang, F. (2018). Stability, microstructure and rheological behavior of konjac glucomannan-zein mixed systems. Carbohydrate Polymers, 188(November 2017), 260–267. https://doi.org/10.1016/j.carbpol.2018.02.001
Purnomo, D., Putri, A. Y., Hisyam, H. M., Rimatunnisa, R., Indriani, D. R., Adinda, P. R., Hasanah, Y. R., & Hamad, A. (2023). Effect of Drying Method on Antioxidant Activity and Total Flavonoid Content of Java Tea Crude Drug ( Orthosiphon aristatus ). Research in Chemical Engineering, 2(1), 29–33. https://doi.org/https://doi.org/10.30595/rice.v2i1.87
Qadri, O. S., Srivastava, A. K., & Yousuf, B. (2020). Trends in foam mat drying of foods: Special emphasis on hybrid foam mat drying technology. Critical Reviews in Food Science and Nutrition, 60(10), 1667–1676. https://doi.org/10.1080/10408398.2019.1588221
Santos-Buelga, C., González-Paramás, A. M., Oludemi, T., Ayuda-Durán, B., & González-Manzano, S. (2019). Plant phenolics as functional food ingredients. In Advances in Food and Nutrition Research (1st ed., Vol. 90). Elsevier Inc. https://doi.org/https://doi.org/10.1016/bs.afnr.2019.02.012
Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006
Susanti, D. Y., Sediawan, W. B., Fahrurrozi, M., & Hidayat, M. (2021). Foam-mat drying in the encapsulation of red sorghum extract: Effects of xanthan gum addition on foam properties and drying kinetics. Journal of the Saudi Society of Agricultural Sciences, 20(4), 270–279. https://doi.org/10.1016/j.jssas.2021.02.007
Susanti, D. Y., Sediawan, W. B., Fahrurrozi, M., Hidayat, M., & Putri, A. Y. (2021). Encapsulation of red sorghum extract rich in proanthocyanidins: Process formulation and mechanistic model of foam-mat drying at various temperature. Chemical Engineering and Processing - Process Intensification, 164(November 2020), 108375. https://doi.org/10.1016/j.cep.2021.108375
Tavares, I. M. de C., Sumere, B. R., Gómez-Alonso, S., Gomes, E., Hermosín-Gutiérrez, I., Da-Silva, R., & Lago-Vanzela, E. S. (2020). Storage stability of the phenolic compounds, color and antioxidant activity of jambolan juice powder obtained by foam mat drying. Food Research International (Ottawa, Ont.), 128(May 2019), 108750. https://doi.org/10.1016/j.foodres.2019.108750
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6–7), 669–675. https://doi.org/10.1016/j.jfca.2006.01.003
Wirantika, A., Rahma, I. N., Putra, R. A., Almayda, D., Hayuningtyas, A., Jitphongsaikul, P., & Hamad, A. (2023). Drying Methods Affecting the Antioxidant Activity of Turmeric Crude Drug. Research in Chemical Engineering, 2(2), 51–56. https://doi.org/https://doi.org/10.30595/rice.v2i2.111
Xu, W., Wang, S., Ye, T., Jin, W., Liu, J., Lei, J., Li, B., & Wang, C. (2014). A simple and feasible approach to purify konjac glucomannan from konjac flour – Temperature effect. Food Chemistry, 158, 171–176. https://doi.org/10.1016/j.foodchem.2014.02.093
Zhang, W., & Rhim, J. (2022). Food Hydrocolloids Recent progress in konjac glucomannan-based active food packaging films and property enhancement strategies. Food Hydrocolloids, 128(February), 107572. https://doi.org/10.1016/j.foodhyd.2022.107572
Zhang, Y. Q., Xie, B. J., & Gan, X. (2005). Advance in the applications of konjac glucomannan and its derivatives. Carbohydrate Polymers, 60(1), 27–31. https://doi.org/10.1016/j.carbpol.2004.11.003
Zhou, X., Zong, X., Wang, S., Yin, C., Gao, X., Xiong, G., Xu, X., Qi, J., & Mei, L. (2021). Emulsified blend film based on konjac glucomannan / carrageenan / camellia oil : Physical , structural , and water barrier properties. Carbohydrate Polymers, 251(August 2020), 117100. https://doi.org/10.1016/j.carbpol.2020.117100
Sva prava zadržana (c) 2025 The Authors

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
