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ABSTRACT

This study utilizes satellite-based rainfall CHIRPS to evaluate GCMs-CMIP6 models over Su-
dan from 1985 to 2014. Overall, the GCMs of BCC-CSM2-MR, CAMS-CSM1-0, CESM2, EC-
Earth3-Veg, GFDL-ESM4, MIROC-ES2L, and NorESM2-MM are well reproduced in the uni-
modal pattern of June to September (JJAS), and hence employed to calculate Multi-Model 
Ensemble (MME). Then, we examine the capability of the GCMs and MME in replicating the 
precipitation patterns on annual and seasonal scales over Sudan using numerous rank-
ing metrics, including Pearson Correlation Coef ficient (CC), Standard Deviation (SD), Taylor 
Skill Score (TSS), Mean Absolute Error (MAE), absolute bias (BIAS), and, normalized mean 
root square error (RMSD). The results show that the MME has the lowest bias and slight-
ly overestimates rainfall over most parts of our study domain, whilst, others (ACCESS-CM2, 
BCC-CSM2-MR, CAMS-CSM1-0, CESM2, CNRM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, 
FGOALS-f3-L, FGOALS-g3) consistently overestimate rainfall in referring to CHIRPS data, 
respectively, but FIO-ESM-2-0 underestimates bias value. Moreover, MIROC-ES2L and 
NorESM2-MM demonstrate better performance than the other models. Finally, we em-
ployed a bias correction (BC) technique, namely Delta BC, to adjust the GCMs model prod-
ucts through the annual and monsoon seasons. The applied bias correction technique 
revealed remarkable improvement in the GCMs against the observations, with an improve-
ment of 0 – 18% over the original. However, MME and MIROC-ES2L show better perfor-
mance af ter correction than other models.
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Introduction

Africa is the second-populated continent in the world, 
with a population of 1.2 billion and an area of about 30 mil-
lion km² (11.6 million mi²), and one of the most vulnera-
ble to climate change due to its high exposure to droughts, 
f loods, rising temperatures with little ability to adapt (Al-
mazroui et al., 2020). However, Sudan, which lies in the 
eastern part of the continent, is considered one of the most 
vulnerable countries to the risks of climate change, espe-
cially f lood and drought (Alhuseen, 2014), and has expe-
rienced several environmental changes in the past, and 
more are projected to occur in the future (Walthall, 2012). 
The implementation of the United Nations Framework 
Convention on Climate Change (UNFCCC), with several 
studies, shows that the development process will be great-
ly impacted by climate change, especially in fields like wa-
ter, agriculture, and health (Alhuseen, 2014).

To investigate the present and future of Earth’s cli-
mate system, many global climate models have been de-
veloped (Kumar et al., 2013). Furthermore, future changes 
in rainfall across this region must be detected and under-
stood by stakeholders in resource management and plan-
ning, as the variability of the future climate is a major con-
cern (Rajbhandari, et al., 2018). Since the primary tools of 
the analyses and determining what climate we are like-
ly to have in the near and not-so-near future use dynam-
ical downscaling with regional climate models (RCMs) 
and global climate models (GCMs) (Maroneze et al., 2014), 
the evaluation of climate models is considered as essen-
tial for providing model-based climate data (Babaous-
mail et al., 2022). Several climate modeling organizations 
have run climate simulations for the future using various 
IPCC emission scenarios (Rajbhandari et al., 2018). Global 
climate models (GCMs), which are mostly used for conti-
nental and hemispherical climate research, have proven to 
be a useful tool for analyzing the changes that could have 
an impact on these systems in the future. However, due 
to their typical spatial resolutions, which are on the order 
of hundreds of kilometers (Expósito et al., 2015), further-
more, often, the availability of numerous GCMs is seen 
as the main cause of uncertainty in precipitation projec-
tions (Tegegne & Mellesse, 2022). So, it is critical to eval-
uate the fundamental uncertainty. The interior variability 
of the climate system, model error, and uncertainty in the 
greenhouse emission scenario are three potential causes 
of uncertainty in climate projections (Ishida et al., 2020). 
Therefore, our results should be reduced to a more accu-
rate resolution to reliably evaluate the regional effects 

of climate change (Ishida et al., 2020). The model eval-
uation for this study was based on a range of statistical 
measurements and visual graphical comparisons for the 
same aggregation periods to postulate potential changes 
in precipitation (Akurut et al., 2014). These are generally 
three-dimensional dynamic and physical models of the at-
mosphere, ocean, Earth’s surface, and cryosphere that are 
coupled and run on supercomputers at full power. Around 
the world, there are many models of this type, all with var-
ying formulations, strengths, and weaknesses, leading to 
one of the main uncertainties in climate change projec-
tions (Collins & Senior, 2002). 

This insight is particularly important in climate re-
search on Sudan’s complex orography, where regional 
models should be able to resolve a few kilometers. The at-
tribution of uncertainties in the projection study brings to 
light some factors, such as systematic and non-systemat-
ic biases in the model datasets or methods that take into 
account the natural variability of the climate, such as the 
El Nino-Southern oscillation or warming of the tropical 
oceans (Ngoma et al., 2021). Hence, from the perspective 
of climate dynamics, the spatial and temporal variabili-
ty of precipitation poses a variety of difficulties for pro-
cess comprehension, event prediction, and climate change 
projection, and the urgency of the issue is increased by the 
fact that many communities in Africa are particularly vul-
nerable to climate change (Badr et al., 2016). Also, the rainy 
season for this study, which spans from June to Septem-
ber over the entire region, was linked to the annual migra-
tion of the intertropical convergence zone (ITCZ), where 
the Atlantic Ocean, Red Sea, Mediterranean, and Indian 
Ocean are the major main sources of water vapor (Salih et 
al., 2015). The variability of rainfall in various locations in 
Sudan is significantly inf luenced by sea surface tempera-
ture (SST) in the Indian and Pacific Oceans, and the Atlan-
tic Multidecadal Oscillation (AMO) is brought on by mod-
ifications in essence.

Based on the aforementioned studies, and to address the 
gap in existing research in this area, as far as we know, we 
seek to conduct such a study. This study aims to evaluate the 
performance of a general circulation model (GCM) in sim-
ulating regional rainfall and to correct any potential bias-
es through data assimilation techniques. The study aims to 
assess the accuracy of the GCM simulations by comparing 
them against the Climate Hazard Group Infrared Precipita-
tion with Station (CHIRPS) dataset over Sudan and to iden-
tify any discrepancies or biases in the model.
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Materials and Methods

Study area
Sudan is situated in Eastern Africa within [8.4 and 23.3º 
N] and [21.5 and 39.0º E] as in (Figure 1). Its total area is 
1,886,068 km2, with adjoint borders with South Sudan 
from the South, Ethiopia and Eretria in the East, Lib-
ya Northwest, Chad and Central Africa in the West, and 
Egypt in the North (Elramlawi et al., 2018). 

Rainfed agriculture inhabits more than 90% of the cul-
tivated land, producing agricultural products and the re-
lated means of subsistence for the Sudanese people (Sid-
dig et al., 2020). The country is characterized by several 
topographic features such as the valleys of the Blue and 
White Nile Rivers, and the elevated eastern and southern 
boundaries, as well as the main Nile River and its tributar-
ies, besides some isolated uplands (Williams & Nottage, 
2006). The dry season in the country spans from Octo-
ber to March, followed by a hot season from April to June, 
and a wet season from June to September. However, the 
environment and social circumstances in Sudan are sig-
nificantly inf luenced by rainfall (Gamri, et al., 2009). The 
rainy season (June to September) across Sudan has been 
linked to the annual migration of the Intertropical Con-
vergence Zone (ITCZ) (Salih et al., 2015). During the bore-
al summer, this rainfall was brought on by winds from the 

Arabian Peninsula that were blowing North and adverting 
moisture from the Red Sea. August, is the wettest month 
of the year in much of Sudan, with up to 100 mm/month 
(Alriah et al., 2021). However, there is a humid area on 
the Red Sea coast, where the rains fall during the winter 
with a sporadic distribution with a peak quantity in No-
vember, and also fall during the summer when the tem-

perature is moderate. In other locations, August is typi-
cally the month with the most rainfall, but July can also be 
rainy in some places, from one region to another, there is 
a significant difference in the quantity of rainfall and the 
length of the rainy season (Ahmed & Elhag, 2011).

Data
This study used Climate Hazard Group Infrared Precipita-
tion with Station monthly precipitation datasets (CHIRPS.
v2), with a spatial resolution 0.05º × 0.05º (5.55 x 5.55 km2) 
(https://data.chc.ucsb.edu/products/CHIRPS-2.0/), was 
obtained from (1985-2014), it is blending station data and 
reduce any uncertainties that may lack rain gauge, there-
fore, it has a better performance among east Africa and re-
cently evaluated over the study domain (Alriah et al., 2022).

Also, the initial realizations (r1i1p1f1), for all CMIP6 
models were downloaded from the website (https://

Figure 1. The study area location and its topographical features

https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip6
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cds.climate.copernicus.eu/cdsapp#!/dataset/projec-
tions-cmip6). Climate models’ information and details of 
the 16 historical GCM models utilized in this study are ob-
tained in Table 1. 

Methodology 
The evaluation of climate models is a critical step in assess-
ing the accuracy and reliability of their outputs. Hence, 
the best correlated methods are selected based on statis-
tical and error measures like the Pearson Correlation Co-
efficient (CC), Standard Deviation (SD), Taylor Skill Score, 
Mean Absolute Error (MAE), and absolute bias (BIAS). 
Many scholars, (Alriah et al., 2022; Karim et al., 2023), use 
it for comparing the performance of the climate data sim-
ulation against the observed data using the climatology of 
annual and intra-annual time scales. Here, we used a mul-
ti-Models ensemble for the best selected GCM models, af-
ter unifying (Bilinear-interpolation) their resolution into 
the same resolution of reference data (CHIRPS), followed 
by averaging the CHIRPS dataset within the region, as 
shown in the equations below. 

Mx = 1
n

xii=1

n
∑

�
(1)

The variability is calculated using the Square Root of 
Variance (standard deviation), represented as σ,

σ x =
1
n

xi −x( )
1

n
∑

2

�
(2)

Where xi is the monthly rainfall, x is the mean of the en-
tire series, and σx is the standard deviation for the models, 
with respect to data used to rate the evaluation. Further-
more, the measure of statistical error validation of mod-
el-based versus observed-based precipitation.
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It was used to evaluate the observation data and dataset 
of the gridded simulation model, when the CC is close or 
equal to 1, it means that there is a correlate high, the nega-
tive bias expresses the area where the model is higher than 
the reference data, and positive bias expresses the area the 
model is lower than the observation data.
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For both models and observation patterns, Rm is the 
correlation coefficient, and Ro is the maximum possible 
correlation coefficient (i.e., 0.999), whereas m and o are the 
standard discrepancies from the simulation and reference 
precipitation patterns, respectively. Between 0 and 1, the 
TSS value is measured, with values closer to 1 indicating 
higher model performance.

Table 1. The GCMs-CMIP6 information and their spatial coverage 

№ Model ID Country resolution Reference

1 ACCESS-CM2 Australia 1.9° × 1.3° (Mkala et al., 2023)

2 BCC-CSM2-MR China 1.1° × 1.1° (Wu et al., 2021)

3 CAMS-CSM1-0 China 1.1° × 1.1° (S & L, 2023)

4 CESM2 USA 1.3° × 0.9° (Meehl et al., 2020)

5 CNRM-CM6-1 France 1.4° × 1.4° (Voldoire et al., 2019)

6 CNRM-CM6-1-HR France 0.5° × 0.5° (Weijer et al., 2020)

7 CNRM-ESM2-1 France 1.4° × 1.4° (Séférian et al., 2019)

8 EC-Earth3-Veg Europe 0.7° × 0.7° (Babaousmail et al., 2021)

9 FGOALS-f3-L China 1.3° × 1° (Klutse et al., 2021)

10 FGOALS-g3 China 2° × 2.3° (Wang et al., 2022)

11 FIO-ESM-2-0 China 1.3° × 0.9° (Bao et al., 2020)

12 GFDL-ESM4 USA 1.3° × 1° (Zheng et al., 2022)

13 MIROC-ES2L Japan 2.8° × 2.8 (Hajima et al., 2020)

14 MRI-ESM2-0 Japan 1.1° × 1.1° (Kawai et al., 2019)

15 NorCPM1 Norway 1.9° ×2.5° (Bethke et al., 2021)

16 NorESM2-MM Norway 1.3° × 0.9° (Seland et al., 2020)

https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip6
https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip6
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In order to evaluate the model, we calculate the Mean 
Bias of GCM- The dif ference between the observed and 
modeled rainfall is calculated to determine the mean 
bias. The mean bias is calculated for monthly rainfall 
based on the CHIRPS dataset, the GCM and the obser-
vations to obtain a spatial distribution of the mean bias, 
Overall, spatial distribution of mean bias GCM of rainfall 
is a crucial step to determine the accuracy and reliabili-
ty of GCM simulations, and it helps to suggest improve-
ments in the GCM models it helps to suggest improve-
ments in the GCM models. Climate Index: In order to 
evaluate the climate model with reference data (CHIRPS) 
the large-scale ef fects of atmospheric circulation on 
rainfall. This bias can be due to a variety of factors, such 

as inaccuracies in the models’ physical processes, limita-
tions in the models’ spatial or temporal resolution, or er-
rors in the input data used to initialize and run the mod-
els. The framework process of this study is illustrated in 
the f lowchart (Figure 2).

For precipitation variables, the bias in a geographical lo-
cation x is given by the difference between observed and 
simulated precipitation, Bias-corrected precipitation in x 
at some time t in the past was estimated as below (Men-
dez et al., 2020).

ass
BCP =

Pass d( )⋅
µm Pobs t( )( )
µm Pass t( )( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

30 �
(6)

Where  a simulation historical of precipitation GCM to 
be corrected,  reference observation precipitation CHIRPS 
dataset,  a simulation historical of precipitation GCM.

Results 

Climatology of Rainfall 
The rainfall of Sudan is heavily inf luenced by the In-
ter-Tropical Convergence Zone (ITCZ). Hence, the coun-
try experiences a variety of summer rainy seasons from 
June to September. The region’s diverse topography also 
affects where and how much rainfalls, with the South-

east and Southwest zones receiving more rain than the 
Northern zone. Figure 3 shows the monthly mean rain-
fall time series of CHIRPS and 16 GCMs over Sudan dur-
ing 1985 - 2014. We compare the GCMs products against 
the reference data (CHIRPS) based on the annual cycle to 
see how well the models could represent the observed pre-

Figure 2. The framework of this study is presented in a flow-chart format for historical 
data processing, evaluation, and Bias correction, of rainfall variables over the study 
Domain
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cipitation pattern. The degree to which a model can prop-
erly mimic precipitation is what determines how accurate 
it is. The GCMs’ monthly precipitation trends demonstrate 
distinct patterns that represent the annual mean precip-
itation cycle in our domain. Most of the models exhibit a 
unimodal peak in August; however, few models show a bi-
modal peak in June and September. The rainfall amounts 
vary from 0 to 105 mm/month across the models, with rel-
atively higher rainfall amounts during the peak months. 
The following models: BCC-CSM2-MR, CAMS-CSM1-0, 
CESM2, EC-Earth3-Veg, GFDL-ESM4, MIROC-ES2L, and 
NorESM2-MM robustly replicate the peak rainfall while 
reproducing different rainfall amounts. They also have 
a shallow bias, which means that they simulate a low-
er range of precipitation values than the reference data. 
However, it might suggest that averaging a group of dif-
ferent GCMs that perform well may result in better rainfall 
simulation than using a single GCM. Therefore, these sev-
en advantageous GGMs were averaged as mean ensemble 
model (MME) and examined alongside the other 16 GGMs 
in the following analyses. The obtained results further re-
vealed that the ACCESS-CM2, FGOALS-f3-L, FGOALS-g3, 
CNRM-CM6-1, CNRM-CM6-1-HR, and CNRM-ESM2-1 are 
notably underestimating the mean rainfall. 

Specifically, the CNRM-CM6-1, CNRM-CM6-1-HR, and 
CNRM-ESM2-1 are found to be strongly underestimating 
the precipitation than other GCMs. The models observed 

to underestimate precipitation may have insufficient rep-
resentation of the atmospheric and oceanic processes that 
contribute to our study domain. On the other hand, FIO-
ESM-2-0 was detected to be significantly overestimating 
the mean of precipitation. Overall, the models that signif-
icantly underestimate or overestimate precipitation may 
have inaccurate parameterizations, which could lead to er-
roneous projections of future water availability, and thus, 
have serious consequences for the country’s agricultur-
al and economic sectors. In conclusion, the GCMs showed 
varying levels of skill in simulating the Sudan rainfall re-
gime. The accuracy of the GCMs in simulating precipita-
tion over Sudan has significant implications for climate 
change projections and regional water resource manage-
ment; therefore, further investigation and improvement 
are required.

Model performance evaluation
Here, the performance of the considered CIMP6 models 
for this study is evaluated against the CHIRPS dataset to 
assess their capabilities in simulating annual and seasonal 
(JJAS) rainfall over Sudan from 1985-2014. Numerous vali-
dation metrics including Pearson’s correlation coefficient 
(CC), standard deviation (SD), Taylor Skill Score (TSS), 
Mean Absolute Error (MAE), and absolute bias (BIAS) are 
employed to evaluate and test the model’s performance 
versus CHIRPS observation. Taylor diagrams for annu-

Figure 3. Monthly mean rainfall of CHIRPS and 16 multi-model ensembles (mm/month), 
the black line is the reference dataset (CHIRPS) 
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al and seasonal comparison are shown in Figures 4 and 5, 
whilst the values of TSS and BIAS are illustrated in Fig-
ures 6 and 7, respectively. Tables 2 and 3 summarize the 
outcomes of the previous statistical metrics during the 
annual and seasonal (JJAS) comparisons. It found that all 
GCMs produced higher scores in terms of TSS, CC, MAE, 
RMSD, and BIAS during annual comparisons than sea-
sonal (JJAS) comparisons. This result indicates that those 
models simulate the rainfall over Sudan during the annu-
al phase more accurately than the seasonal (JJAS) phase. 
Moreover, through the annual comparison, the MME cap-

tured the largest score in terms of TSS, CC, MAE, RMSD, 
and BIAS with values of 93%, 96%, 6.76, 10.37, and 0.42, re-
spectively. On the other side, CESM2 captured the high-
est score in terms of TSS, MAE, and RMSE during the sea-
sonal (JJAS) comparison and showed reads of 50%, 8.8, and 
10.5, respectively, while CAMS-CSM1-0 demonstrated the 
highest CC (41%) and NorESM2-MM showed the lowest 
bias (-0.42). 

Our results further showed that the following mod-
els: NorESM2-MM, EC-Earth3-Veg, GFDL-ESM4, BCC-
CSM2-MR, MIROC-ES2L, and CESM2 outperform the 

Figure 4. Comparison of annual GCMs-CMIP6 models against satellite-based rainfall 
CHIRPS from 1985 to 2014

Figure 5. Comparison of GCMs-CMIP6 summer monsoon rain against CHIRPS from 1985 
to 2014.
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other CIMP6 models in all statistical tests during the an-
nual comparison. More so, NorESM2-MM demonstrated 
the highest CC with reference data, the largest TSS and 
SDV, and the lowest MAE and BIAS amongst the differ-
ent CIMP6 models. As a result, it might be concluded that 
the six aforementioned models are more efficient than the 
other 16 GCMs in simulating annual rainfall across Su-
dan. It also found that the CNRM-ESM2-1, CNRM-CM6-1, 
CNRM-CM6-1-HR, and FGOALS-f3-L produced a much 

larger bias and significantly lower TSS and CC than oth-
er GCMs. In particular, CNRM-ESM2-1 exhibited the low-
est CC (0.08), the largest bias of 24.65 annually, and 64.66 
in JJAS. Consequently, these four models are considered 
incapable of simulating rainfall over Sudan since they 
have produced statistically insignificant results. Other re-
maining models (including FIO-ESM-2-0, MRI-ESM2-0, 
ACCESS-CM2, and FGOALS-g3) displayed varied scores 
among different statistical tests. 

Figure 6. Summarizing Taylor Skill Score (TSS) of Annual

Figure 7. Bias for annual and JJAS multi-model ensemble and CHIRPS
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Table 2. Summary of statistical that presents the findings of comparisons among annual 
using CHIRPS Rainfall data and historical simulation multi-Model data

Models TSS CC SDV BIAS MAE RMSD

CHIRPS 1.00 1.00 1.00 0.00 0.00 0.00

MME 0.93 0.96 0.81 0.42 6.76 10.37

ACCESS-CM2 0.60 0.87 0.53 12.96 14.90 24.13

BCC-CSM2-MR 0.89 0.89 0.94 -3.24 11.01 15.98

CAMS-CSM1-0 0.69 0.80 0.66 9.86 14.53 23.11

CESM2 0.85 0.86 0.89 -3.95 11.81 17.72

CNRM-CM6-1 0.12 0.46 0.26 22.93 24.69 38.57

CNRM-CM6-1-HR 0.14 0.55 0.26 20.28 23.01 36.31

CNRM-ESM2-1 0.08 0.50 0.20 24.65 25.92 39.71

EC-Earth3-Veg 0.91 0.93 0.87 3.54 9.06 13.53

FGOALS-f3-L 0.22 0.66 0.31 18.35 21.37 33.54

FGOALS-g3 0.39 0.71 0.43 11.49 17.65 28.24

FIO-ESM-2-0 0.81 0.81 1.15 -18.12 20.77 29.18

GFDL-ESM4 0.89 0.89 0.93 -0.85 9.82 15.73

MIROC-ES2L 0.88 0.88 0.91 -4.00 11.45 16.48

MRI-ESM2-0 0.73 0.74 0.83 -3.64 16.69 23.24

NorCPM1 0.73 0.74 0.84 -6.66 17.74 24.05

NorESM2-MM 0.92 0.92 1.04 -2.54 8.58 13.91

Table 3. Summary of statistical that presents the findings of comparisons among JJAS 
using CHIRPS Rainfall data and historical simulation multi-model data

Models TSS CC SDV BIAS MAE RMSD

CHIRPS 1.0 1.00 1 0.00 0.00 0.00

MME 0.3 0.39 0.50 8.80 9.16 10.78

ACCESS-CM2 0.3 0.06 0.82 39.55 39.55 40.45

BCC-CSM2-MR 0.3 0.22 1.48 8.16 11.18 13.45

CAMS-CSM1-0 0.4 0.41 1.36 31.06 31.06 32.31

CESM2 0.5 0.37 1.07 7.04 8.88 10.53

CNRM-CM6-1 0.2 0.19 0.51 64.66 64.66 65.04

CNRM-CM6-1-HR 0.3 0.11 0.78 62.11 62.11 62.63

CNRM-ESM2-1 0.2 0.19 0.51 64.66 64.66 65.04

EC-Earth3-Veg 0.2 -0.04 1.11 12.53 13.06 16.17

FGOALS-f3-L 0.2 0.08 0.65 47.51 47.51 48.14

FGOALS-g3 0.2 -0.15 0.95 52.78 52.78 53.71

FIO-ESM-2-0 0.2 -0.07 0.98 -16.79 17.49 19.43

GFDL-ESM4 0.2 0.02 1.30 8.11 10.93 13.60

MIROC-ES2L 0.4 0.32 1.03 14.04 14.19 16.16

MRI-ESM2-0 0.3 0.11 0.89 14.30 14.54 16.66

 NorCPM1 0.3 0.15 1.34 11.60 13.11 15.58

NorESM2-MM 0.2 -0.13 1.46 -0.42 10.09 12.63
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Spatial annual and JJAS mean evaluation  
of rainfall simulations
Sudan has a wide variety of rainfall variations. Hence, it is 
necessary to understand the f luctuations of rainfall across 
the entire parts of our study area. In this section, the spa-
tial distribution of simulated precipitation from 16 GCMs 
as well as MME was assessed versus the CHIRPS data-
set on the annual and seasonal (JJAS) cycle during 1985-
2014, as illustrated in Figures 8 and 9. Our initial focus was 
on how well the GCMs could recreate the observed spatial 
variability of precipitation along the study domain. Both 
annual and intra-annual results show that most of the 
CMIP6 models can replicate the orographic precipitation 
pattern concerning the CHIRPS dataset. Moreover, the 
behavior of all CMIP6 models runs against the reference 
dataset demonstrating that rainfall increases towards the 
South. Nevertheless, some discrepancies exist among the 
different GCMs from 1985 to 2014. The average maximum 
and lowest annual precipitation were between (5-120 mm), 
respectively, and JJAS’s mean maximum was more than 

120mm and the lowest was greater than 5 mm. The mean 
maximum value was observed over the south to the south-
east zones across all models, whilst the mean lowest value 
was detected over the Northern parts. The results in Fig-
ures 8 and 9 further revealed that the MME model tends 
to follow the reference data; however, certain variations 
in the amount of precipitation were observed in compar-
ison to the CHIRPS dataset. The following eight products: 
BCC-CSM2-MR, CAMS-CSM1-0, CESM2, EC-Earth3-Veg, 
GFDL-ESM4, MIROC-ES2L, MRI-ESM2-0, and NorESM2-
MM were shown to be efficient in simulating the spatial 
change of precipitation based on the reference dataset. 
However, they have slight overestimate or underestimate 
spatial mean distribution (2-120mm/month) relative to the 
other models. In particular, NorESM2-MM performs bet-
ter than other GGMs and exhibits lesser bias through the 
annual and seasonal phases. 

On the other hand, other superior seven GGMs exhib-
ited slight variations of distribution rainfall in compari-
son to the reference dataset. For example, CAMS-CSM1-0 

Figure 8. Spatial patterns of annual mean rainfall observation dataset and data simulation from (1985-2014)
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reveals a shallow decrease in the precipitation magnitude 
over the Southern parts and a slight increase across the far 
Northeast parts; MIROC-ES2L and GFDL-ESM4, and BCC-
CSM2-MR showed a certain increase in the rainfall along 
the Southern zones through the annual phase; EC-Earth3-
Veg has a slight variation over the Southern, Southeast-
erly, and Western borders; and MRI-ESM2-0 shows a de-
crease in the precipitation over the Southeast areas. It also 
observed that the subsequent products (including CN-
RM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, FGOALS-
f3-L) substantially underestimate the values of annual and 
seasonal rainfall over the majority of our study domain. 
Besides, FIO-ESM-2-0 and NorCPM1 appear to overesti-
mate the rainfall over the far Northeast borders, as seen 
in Figures 8 and 9. 

Spatial Distribution of the Bias
Analyzing the bias of GCMs products is crucial to deter-
mine the performance of GCMs simulations. In this part, 
we analyzed the spatial bias of 16 GCMs models and MME 

at JJAS and yearly scale for the period of 1985-2014 over Su-
dan. However, such analysis will demonstrate how well 
the GCM can simulate the precipitation patterns over Su-
dan during the analyzed period. The spatial biases of the 
GCMs were determined as mean differences between 
those models’ outputs and the respective CHIRPS precip-
itation during the annual and seasonal phases (see Fig-
ures 10 and 11). It found that, during the annual and sea-
sonal (JJAS) phase, the bias over most areas for different 
models was between (+40) and (-40) mm (see Figures 10 
and 11). Furthermore, MME exhibited the lowest amount 
of bias amongst all models, however, it slightly overesti-
mated bias across the study area. The subsequent GGMs: 
MIROC-ES2L, NorESM2-MM, EC-Earth3-Veg, and GF-
DL-ESM4 showed analogous bias distribution with a rela-
tively little bias (i.e. the amount of bias positive or negative 
is little than other models) over most areas in the country. 
Other models (including ACCESS-CM2, BCC-CSM2-MR, 
CAMS-CSM1-0, CESM2, CNRM-CM6-1, CNRM-CM6-1-
HR, CNRM-ESM2-1, FGOALS-f3-L, FGOALS-g3) are con-

Figure 9. Spatial patterns of JJAS mean rainfall observation and data simulation from (1985-2014)
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sistently overestimated bias based on CHIRPS data. Over-
all, MIROC-ES2L and NorESM2-MM displayed the lowest 
biases and showed better performance than other individ-
ual GCMs during the annual and JJAS rainfall. Based on 
the achieved results from Figures 10 and 11 it can be con-
cluded that the considered CIMP6 GCMs for this study are 
not able to simulate precipitation patterns accurately over 
the region. The findings of this analysis could be of great 
use in identifying potential improvements in the GCMs 
and optimizing the model’s parameters for future predic-
tions.

Delta Bias Correction
We conducted a more in-depth analysis in this study to de-
termine the extent to which the correction algorithm en-
hances the accuracy of the simulation models. The GCMs 
models are complex systems that simulate the Earth’s cli-
mate system by solving a set of mathematical equations. 
It provides a representation of how the climate system 
might change due to natural variability, human activity, or 

a combination of both. These models simulate the complex 
interactions of different elements of the climate system 
and land-sea-atmosphere-cryosphere interaction. How-
ever, these models are not perfect and can contain errors 
or biases. Therefore, corrections are necessary to improve 
the accuracy of the simulations, as these errors can lead 
to inaccurate projections of future weather conditions. In 
this work, to improve the accuracy of GCM simulations, 
we used the Delta method to correct the models.

Spatial bias distributions after correction of eight GCM 
models, in addition to MME, are shown in Figures 12 and 
13. The correction is applied at each grid point across the 
spatial domain. After the correction, these models were 
evaluated against CHIRPS datasets as a reference from 
1985 to 2014, on a seasonal (JJAS) and annual basis. The 
GCMs rainfall estimates are expected to be closer to the 
observed rainfall values after applying the correction. 
The obtained results in Figures 12 and 13 indicate that the 
spatial mean bias of GCMs precipitation has significantly 
(i.e. 0.2-6 mm/month overestimate or underestimate) re-

Figure 10. Bias of mean JJAS rainfall(mm/month) over Sudan based on CHIRPS Dataset 1985-2014
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duced after applying the correction in comparison to the 
CHIRPS dataset. In addition, the reduction in the posi-
tive bias of the GCM estimates was more noticeable than 
the negative bias. MME and MIROC-ES2L demonstrate 
the lowest bias amount based on CHIRPS data, more so, 
they show better performance on the annual and season-
al (JJAS) scale after applying the correction in comparison 
to other GCMs. For most GCMs, greater improvement in 
the model’s performance was observed through the an-
nual rainfall than the seasonal (JJAS) rainfall; however, 
only EC-Earth3-Veg showed a poor improvement of 3% 
over the original. Although BCC-CSM2-MR has reduced 
the bias amount after applying the correction; nerveless, 

it enlarged the bias domain over the study area, which 
cannot be ignored and might result in more uncertainties 
in the future projection. The model’s ensemble mean has 
proved its ability to be trusted for any further analysis re-
garding future projections among the annual and season-
al phases, according to their shown performance against 
the observations. Overall, the spatial mean bias correc-
tion of GCMs rainfall distribution using the CHIRPS da-
taset is an effective method for improving the accuracy of 
GCM precipitation estimates. However, it is important to 
note that the correction is not perfect and should be used 
with caution, especially in regions with complex precipi-
tation patterns.

Figure 11. Bias of mean annual rainfall (mm/month) over Sudan based on CHIRPS Dataset 1985-2014
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Figure 12. Spatial pattern of Bias af ter correction JJAS Rainfall period 1985–2014 
based on CHIRPS dataset

Figure 13. Spatial pattern of Bias af ter correction of annual rainfall from 1985–2014 
based on the CHIRPS dataset
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Discussion

Climate models, such as those included in the Coupled Mod-
el Intercomparison Project Phase 6 (CMIP6), are critical tools 
in understanding and projecting future climate change. 
These models simulate the most complex aspects of the cli-
mate system, including rainfall, sea level, temperature, and 
ocean circulation, and are used to inform policymakers, as 
well as businesses and individuals, about the expected im-
pacts of climate change. One of crucial regions that requires 
accurate evaluation of climate models is the study domain, 
is the study domain highly vulnerable to the impacts of cli-
mate change. Climate models need to simulate rainfall pat-
terns correctly to aid decision-makers in developing strate-
gies to mitigate the effects of climate change on agriculture 
and other activities. This study used high-resolution satel-
lite-based precipitation with Station (CHIRPS.v2) monthly 
precipitation datasets with a 0.05º × 0.05º spatial resolution 
(Babaousmail et al., 2019; Ngoma et al., 2021). While previ-
ous studies on this domain, used source observation data 
over Sudan and employed CRU TS as reference data, they 
examine the changes in monsoon’s (June–September) fu-
ture precipitation over three zones distributed through Su-
dan based on GCMs from CMIP5 and (CMIP6). The models 
are GISS-E2-H, IPSL- CM5A-MR, and MPI-ESM-LR (BCC-
CSM2-MR, INM-CM4-9 MPI-ESM1-2-LR) in addition to 
the ensemble mean of each group Given systematic errors 
in the GCMs simulations (Hamadalnel et al., 2022). There-
fore, in this study, we focused on the evaluation and cor-
rection analysis of the regional rainfall simulation of the 
CMIP6 model over Sudan, considering the rainfall pattern, 
evaluation of the rainfall simulation, spatial distribution of 
bias, and bias correction. Before evaluating rainfall simula-
tions, it is essential first to understand the observed rainfall 
pattern to ensure the accuracy of the results. Sudan’s rain-
fall pattern is primarily inf luenced by the African monsoon 
system, which is responsible for most of the country’s an-
nual precipitation and seasonal (JJAS) from June to Septem-
ber. Observations of rainfall patterns in Sudan showed that 

the distribution of rainfall varies significantly across the re-
gion. The Southern region received the highest amount of 
rainfall of 120 mm (Figures 8 and 9), while the Northern part 
received the least. 

Sudan also experiences rainfall variability, which is at-
tributed to the large-scale circulation patterns, such as the 
Inter-Tropical Convergence Zone (ITCZ) and the El-Nino 
Southern Oscillation (ENSO) (Alriah et al., 2021). In this 
study, the evaluation was conducted based on metrics 
such as the correlation coefficient (R), RMSE, and the Tay-
lor diagram, which provides a graphical representation 
of the accuracy of the simulated rainfall pattern. The re-
sults of the evaluation showed that most of the employed 
CMIP6 models for this study accurately simulated the 
rainfall pattern over Sudan in annual and seasonal, but 
with a positive bias in most parts of Sudan, particularly in 
the Northwestern part of the country. 

The Coupled Model Intercomparing Project (CMIP), 
which is at the cutting edge of exploring the depth of the 
planet’s past, present, and future climate, has emerged as 
a key tool in climate science, providing the scientific com-
munities with crucial data for research that informs im-
portant assessment activities like the ongoing IPCC pro-
cess and other fields (Taylor et al., 2012). An assessment of 
the simulated findings of these GCMs versus the observa-
tion must be completed before taking a prospective look at 
potential future changes, particularly on a regional scale. 
In most cases, this process is carried out by comparing the 
simulations to the observations (Trigo & Palutikof, 2001), 
since it guarantees that the models can accurately repre-
sent some aspects of the climate system while employ-
ing model performance indicators to assess their poten-
tial and limitations (Gleckler et al., 2008). Consequently, 
the projection process is possible. The results of this study 
highlight the importance of evaluating and correcting bi-
ases in climate models to provide accurate information for 
future studies of climate change projection.

Conclusion

The study presents the evaluation and performance of 16 
GCMs-CMIP6 models and compares their ability to accu-
rately replicate observational satellite-based data over Su-
dan between 1985 and 2014. After conducting comprehen-
sive statistical error measurements of the GCMs models’ 
products over Sudan including Pearson Correlation Coef-
ficient, Standard Deviation, Taylor Skill Score, Mean Ab-
solute Error, absolute bias (BIAS), and, normalized mean 
root square error, we found that:

1.	 MME, which averaged the better GCMs models, 
demonstrated the strongest overall performance. 

Additionally, three individual models – NorESM2-
MM, MIROC-ES2L, and BCC-CSM2-MR – proved 
relative accuracy (-12 to 12 mm of mean bias before 
correction) in reproducing both annual and sea-
sonal patterns. However, several models, includ-
ing ACCESS-CM2, FGOALS-f3-L, FGOALS-g3, CN-
RM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, and 
CNRM-ESM2-1, performed poorly in simulating the 
observed data. 

2.	 The models improved by 0-18% over the origin pro-
gress after applying bias correction (Delta method), 
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especially the ensemble mean (MME). In contrast, 
some CMIP6 models had slight deviations from the 
observations.

Generally, the study suggests that the MME and the 
three individual models offer the most promising options 
for future modeling efforts and have a satisfactory perfor-
mance after correction.
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