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ABSTRACT

Developing countries with complex urban spatial configurations strive to control urbani-
zation and its impact on energy consumption. The current study has used Tiruchirappal-
li city in India as a study area to demonstrate the impact on cooling energy consumption by 
complex urban spatial configurations. To comprehend the complexity, sixty-five urban pro-
totypes were generated through permutation and combination using local climatic zones 
scheme. The image-based binary classification model was used to categorize the morphol-
ogies in the city. The study aims to investigate the cooling energy consumption of a heter-
ogeneous urban spatial configuration through prototype models. The urban prototypes 
were grouped using the unsupervised machine learning approach. The validation for the 
prototypes was conducted through the RMSE method, and the errors lie between 0.45 and 
0.68. The results indicated that increasing the green cover ratio on the combination of high 
and mid-rise spatial configurations is inef fective in reducing the cooling energy. In con-
trast, the combination of low-rise and mid-rise spatial configurations consumed less ener-
gy for air-conditioning when the green cover ratio was increased. The results conclude that 
the combination of high-rise with open low-rise spatial configuration is unsuitable for warm 
and humid climate. The high frequency of the cooling energy was between 120Gjs to 250Gjs 
which explains that the complexity of the spatial configuration in the city helps to reduce 
the energy utilized for air conditioning. This research aids planners and energy policymak-
ers in the decision-making process of city spatial planning. 
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Introduction

In the last few decades, the world has undergone high ur-
banization as a result of population growth and the rise 
of cities (Sun et al., 2020). The life expectancy of the cit-
izens living in highly populated cities has been reduced 
drastically. Urban population encounters major dif fi-

culties pertaining to thermal conditions and the ener-
gy sources necessary for sustaining a comfortable indoor 
environment (Ellena et al., 2020). Since the urban popu-
lation has increased over the past few decades, temper-
atures in cities have been rising rapidly (Rajagopal et al., 
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2023). Several cities have seen increased temperatures 
due to urbanization and climate change (Hood, 2005). In 
the 21st century, high-temperature occurrences are ex-
pected to become more frequent and longer (Dosio et al., 
2018; Perkins-Kirkpatrick & Lewis, 2020). A study con-
ducted by Heaviside et al. (2017) demonstrates that ur-
ban inhabitants have greater health risks than rural pop-
ulations, particularly during high temperatures. The 
occurrence of heat waves further intensifies this risk. 
Numerous research has been conducted on the urban 
environment and microclimate to reduce the high-tem-
perature occurrence in the coming years (Abougendia, 
2023). The spatial arrangements of the built environment 
create thermal anomalies between cities and rural land-
scapes, which is deduced by the urban heat island inten-
sity (Abougendia, 2023; Taha, 1997). UHI phenomenon is 
explained by dif ferent cooling rates between urban and 
rural areas (Klysik & Fortuniak, 1999). UHI intensity has 
been studied and reported by various authors (Arnfield, 
2003; Masson et al., 2020; Oke, 2004; Stewart, 2011), and 
the temperature differences recorded in the research 
were based on urban morphology, land use pattern and 
climate (Nastran et al., 2019; Yue et al., 2019). Previous re-
search on UHI addressed thermal anomalies up to 10°C 
(Alcoforado et al., 2014; Warren et al., 2016). The UHI in-
tensity causes heat-related health risks in the residents 
of cities, along with increased cooling load consumption 
(Barrao et al., 2022). In the wave of urbanization, reduc-
ing cooling load consumption in the cities is the top pri-
ority (Vallati et al., 2015). Urban energy performance has 
become a worldwide environmental conversation in every 
decennial since global urbanization is expected to reach 
about 70% by 2050 (United Nations, 2019). The urban mor-
phology significantly increases energy usage (Katal et al., 
2022). A study by X. Li et al. (2019) shows that the cooling 
load of residences increases substantially for a 3°C rise in 
standard effective temperature (SET). So, it is essential to 
control the cooling load consumption in the cities by op-
timizing the urban morphologies and reducing the UHI 
intensity. The phenomenon of climate change presents 
significant obstacles to the energy consumption of build-
ings, as outdoor weather conditions inf luence the ener-
gy and thermal performance of structures (Huo et al., 
2022). To adequately address the issue of climate change, 
it is imperative to gain a comprehensive understanding 
of the forthcoming regional and temporal trends in ener-
gy use alongside the implementation of energy ef ficien-
cy measures for building stocks (Deng et al., 2023). Ur-
ban Building Energy Models (UBEMs) are derived from 
Building Energy Models (BEMs), which can analyse en-
ergy demand and assess the effects of prospective ret-
rofits on building stock at a city or district level. These 
models utilize Energy Plus as the simulation engine for 
analysis and evaluation purposes (Hong et al., 2020). The 

present study has used UBEMS to investigate the cool-
ing load consumption of residential buildings in complex 
spatial configurations of a city. Urbanization and popu-
lation expansion in developing countries have a signifi-
cant impact on climate change (Parmesan & Yohe, 2003). 
To analyze the impacts, the urban planners have de-
signed a few schemes. The local climatic zone is one such 
scheme invented by Oke and Stewart. The local climate 
zone scheme is a system for classifying urban areas into 
distinct local climates based on morphological and land 
cover characteristics (Stewart & Oke, 2012). Several in-
vestigators have conducted LCZ classification studies (Al-
exander & Mills, 2014; Kotharkar & Bagade, 2018; Lecon-
te et al., 2015; Nassar et al., 2016; Skarbit et al., 2017). LCZ 
classification scheme helps to find the urban morpholog-
ical patterns of the cities through which researchers can 
create models for urban energy studies (Cao et al., 2022). 
The LCZ technique facilitates the classification of spatial 
configuration within urban areas, which helps to finalize 
suitable urban designs in the climate change mitigation 
and adaptation process. The present study has used the 
LCZ scheme to create urban prototypes to classify com-
plex spatial configurations of the city. Various studies 
were conducted on the classification of LCZs in dif ferent 
cities. However, most of them are microscale classifica-
tions limited to small urban patches. The LCZ classifica-
tion study conducted in Nagpur indicates that cities with 
complex urban forms need separate LCZ subcategories. 
The intra-urban heterogeneity is high in complex urban 
forms due to unplanned settlement patterns (Kotharkar 
& Bagade, 2018). Numerous cities in India come under 
unplanned settlements since their urban morphologies 
are heterogeneous in nature. The need for classifying the 
city at the local scale level helps to capture more regional 
features compared to microscale classification. A multi-
tude of studies have been conducted to examine the cor-
relation between urban form and environmental factors, 
with the aim of equipping designers and planners with 
performative indicators that can be utilized during the 
initial stages of design (Natanian & Auer, 2020). Previous 
studies have used several classification methods to clas-
sify the urban forms and create archetypes to assess per-
formance in terms of energy and microclimate. A study 
by Joshi et al. (2022) used urban morphological parame-
ters as the independent variable in clustering the urban 
archetypes. Recent years have seen a rise in studies relat-
ed to intra-urban heterogeneity in order to enhance urban 
planning regulations. It is imperative to minimize the 
number of simulations conducted in these studies during 
a large-scale calibration process (Deng et al., 2023). Most 
research has primarily examined the inf luence of climat-
ic change on the energy ef ficiency of archetypal or pro-
totype buildings (Deng et al., 2023; Heidelberger & Ra-
kha, 2022; Nagpal et al., 2019; Nik, 2016; Wang et al., 2018; 
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Yang et al., 2021). However, there is a dearth of compre-
hensive research on the variations of spatial configura-
tion across the unplanned settlements present in cities, 
which needs to be adequately elucidated. The complexi-
ty of spatial configuration varies for each city, particular-
ly for cities in developing countries where the unplanned 
settlements are high in ratio, so the division of distinct 
morphological features is not possible in such cities. To 
overcome this issue, the current study focuses on an In-
dian metropolis and presents a detailed process of ana-
lyzing the spatial configuration, as well as investigating 
energy usage for cooling purposes. The study seeks to ac-
complish two research objectives: (a) To comprehend the 
spatial geography of the urban area in a highly heteroge-
neous mixed urban setting. (b) To conduct a quantitative 
analysis on the spatial configuration of a complex metro-
politan area to determine the most ef ficient urban forms 
that minimize the energy usage for Air-conditioning. The 
present study aims to categorize urban prototypes with 
respect to their energy consumption and analyze them to 
develop urban planning energy regulation policies. 

Research Area 
Tiruchirappalli is situated in Tamil Nadu, India, and has 
a tropical savanna or tropical wet and dry climate, as clas-
sified by the Koppen climate classification. Tiruchirappal-
li is classified as a warm and humid climatic zone accord-
ing to the National Building Code (NBC-2016). The year is 
divided into four distinct seasons: winter, which spans the 
months of January and February, and summer, which en-
compasses the period from March to June. The monsoon 
season occurs from June to September, followed by the 
post-monsoon season from October to December. The city 
comprises high-rise, midrise and low-rise structures with 
highly vegetated to bare soil land covers. The city comes 
under one of the complex-built environments with a mix-
ture of all built-cover and land-cover typologies. The city 
was chosen for the study for its highly heterogeneous built 
settings and hot summers. A study by Bhatnagar et al. 
(2018) indicates that Tiruchirappalli has the highest cool-
ing degree days in India. So, the current study is essential 
to understand the impact of spatial configuration on cool-
ing load reduction potential.

Methodology

The methodology section is subdivided into five phases as 
follows.

Phase 1: Sub-classification system
In the initial stage, a novel subclassification system using 
the Local climatic zones was introduced to segregate the 
urban morphology into different classes. For classification 
purpose, we have utilized permutation and combination 
method to curate different possibilities of spatial configu-
ration with nine LCZ classes (Figure 2). 

Phase 2: Model Preparation
Using the sub-classification model, sixty-five different 
morphologies were obtained (Figure 3). Each morphology 
was re-arranged into four combinations based on the pro-
portion of land cover and build cover zones (Figure 2b). The 
LCZ models were configured as per the development con-
trol regulations of Tiruchirappalli city. The obtained mor-
phologies and their combinations were modelled in Rhino 
7 to export it for simulation.

Phase 3: Image processing
We have used pixel-based segregation (binary classifica-
tion) in python to find the LCZ classes in the study area. 
Initially, the training images from the study area of size 
40,000 Sq.m were utilized for training the model (Figure 
4). The images were converted into two-dimensional bina-
ry pixels, and for testing, the high-resolution Google im-
age of the city was divided into numerous urban patches. 

With the help of a random shuff le, both training and test-
ing binary data were equated to find the LCZ classes of the 
study area.

Phase 4: Energy Simulation
The model imported from Rhino 7 was used to conduct en-
ergy simulation for the study. Rhino 7 helps the research-
ers as a computational design tool that connects the gap 
between modelling and simulation (Anton & Tănase, 
2016). URBANopt components from ladybug tools are 
utilized to calculate the cooling load since ladybug is an 
environmental analysis tool from Grasshopper, which 
accounts for complex building geometry and weather in-
formation (Bajšanski et al., 2024). The standard effective 
temperature was fixed for all models, which was obtained 
through a survey of the residents in the city. The model’s 
simulation settings and physical properties are provided 
in Table 1 and Table 2.

Phase 5: Clustering and Validating 
The sixty-five different spatial configurations were clus-
tered through their UMI values using the k means clus-
tering method (Figure 1), and validation was conducted 
through a one-way ANOVA test. The optimal number of 
clusters was determined using silhouette scores. The dis-
tribution of urban configurations in the clusters was plot-
ted in the area graph and pie-chat for further investiga-
tion.
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Phase 6: Energy performance assessment
In the final stage, the data collected from the URBANopt 
simulation was analyzed to determine the low-perform-
ing built environment present in the city, and the best-per-
forming morphologies were identified and ranked based 
on their cooling load consumption.

Sub-classification system
A novel subclassification system was introduced in this re-
search for cities that are highly heterogeneous and have 
complex spatial configurations. This sub-classification 
helps to capture more complex features compared to the 
traditional method. A study conducted in China indicates 
that fine-scale mapping has potential, but we can retain 
more region-level features from the larger grid size (170 m 
× 170 m) (Ma et al., 2023). Analyzing a minimal area of 50 m 
× 50 m is efficient, but large-scale patches are more reliable 
and efficient for investigating the impact of urban mor-
phological features on building energy consumption. This 
classification system was created based on the permuta-
tion and combination of LCZs (Figure 2a). In this combi-
nation, LCZ 7, LCZ 8, LCZ 9, LCZ D, LCZ F and LCZ G were 
excluded since these LCZs present in the lowest ratio in 
Tiruchirappalli city. This study aims to cluster the LCZs of 
an ideal central business district so the most prominent 
LCZs, which come under compact types (LCZ 1, LCZ 2 and 
LCZ 3), Open configurations (LCZ 4, LCZ 5 and LCZ 6) and 
land cover configurations (LCZ A, LCZ B and LCZ C) were 
chosen for the permutation and combination. In this clas-
sification, not more than one land cover was used to de-
fine the typology since the study focuses on the energy 
consumption data of built morphologies. 

Model Preparation
Urban blocks are sections of one or more buildings encircled 
by streets (Schirmer & Axhausen, 2016). The sample city cho-
sen for the model was Tiruchirappalli in South India, which 
comes under warm and humid climate. The development 
control regulations of the city were used for the design-

ing of blocks. The minimum plot size allowed for the build-
ing was 300 Sq.m., used in the study to create the building 
blocks (Figure. 2c). Thirty plots were created for one mod-
ule with a module size of 9000 Sq.m (Figure 2b). Each mod-
ule was modelled with four different combinations, and 
the four modules were combined to create one neighbour-
hood of 38,709 Sq.m. Four combinations of the neighbour-
hood were designed based on the distribution of morphol-
ogies. The first combination has an equal distribution of all 
morphologies, followed by a 60-20-10 ratio of three zones for 
the rest of the combinations (Figure 2b). The neighbourhood 
designed for the study consists of 1200 plots with the distri-
bution of different land cover and built cover types. A block 
model was designed in Rhino 7 with fixed f loor heights for 
low, mid, and high-rise buildings (Table 1). The number of 
f loors for the low-rise building is 1, the mid-rise building is 
3.5, and the high-rise building is 7. The distribution of the 
buildings in the plot was determined by giving random seed 
values in the scripting so that for every LCZ, the variations 
in arrangements of the building block can be achieved. The 
Final model consisted of 65 zones grouped into six configu-
rations: compact and open with landcover configurations, 
compact and open configurations, compact with landcover 
configurations, open with landcover configurations, com-
pact configurations, and open configurations. The open 
configuration has one zone (LCZ 456), and the compact con-
figuration has one zone (LCZ 123). Compact open with land-
cover configuration has 27 zones, compact and open config-
uration has 18 zones, compact with landcover configuration 
has 9 zones and open with landcover configuration has 9 
zones (Figure 3). 

Urban Morphology Indicators
Numerous urban morphological indicators (UMIs) have 
been reported in previous studies, and they are broadly 
categorized as building block indicators, open space indi-
cators, street indicators, and plot indicators (Elzeni et al., 
2022). The selected urban morphology indicators for the 
current study were Aspect ratio, Sky view factor, Perme-

Figure 1. Workflow representation of research phases
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able surface fraction, Floor area ratio, Height of rough el-
ement, Standard deviation of building height, Ground 
space index and open space ratio. The indicators were se-
lected based on the literature review from published re-
search articles (Apreda et al., 2020; Heris et al., 2020; 
Palusci et al., 2022; Stewart & Oke, 2012b; Teller & Azar, 
2001). These indicators were used in a study conducted in 
Belgium, where they found that the difference in UMI val-
ues between the zones significantly impacts microclimate 
(Joshi et al., 2022). The urban district model from the Drag-
onf ly was used to calculate the UMI values. The formulas 
used to calculate the indicator values are given in Figure 
2d. In the correlation matrix we found that OSR (Open 
space ratio) was highly co-relating with Permeable surface 
fraction and Ground space index, so it was not used for the 
clustering process since it would alter its results Figure 5.

Image Processing 
The area of Tiruchirappalli city constitutes 167.2 Sq.km, 
of which 8 Sq.km was taken for study from the region of 
KK Nagar zone (Figure 4d). The city was divided into five 
zones for administrative purposes and KK Nagar is pop-
ulated high compared to other zones (Figure 4c) (Karthik, 
2021). To conduct image classification, the study area was 
divided into urban grids with two fixed grid sizes, one 
larger (400m × 400m) and another smaller (200m × 200m). 
High-resolution Google map images of the identified LCZs 
in the city were fed as input to the image classifier model. 
The images were converted to the binary matrix, and the 
values were reshuff led multiple times to train the mod-
el for every probability. Ultimately, the Python program 
was utilised to determine the appropriate zone for the test 
data, which consisted of Google photos measuring 200m 
x 200m. Each smaller grid (200m × 200m) comprises three 
different morphologies, which were difficult to process 
through the GIS model and prone to errors while calculat-
ing for a large area. This approach provides a comprehen-
sive understanding of the morphology distribution with 
higher accuracy. The method to convert the Google imag-
es into binary matrices is given in Figure 4a. For each LCZ 
class, 10 images from the study area were used to train the 
model for classification. A total of 650 images were used 
to train the model, and their binary data were collected to 
classify the test images, as shown in Figure 4d. 

Simulation 
The energy simulation method used in this study was 
divided into three sub-stages: (a) Importing the urban 

models, (b) Energy plus weather file generation from 
UWG (Urban weather generator) for all urban proto-
types, (c) Cooling load calculation Figure 1. The energy 
plus weather file (city code: 433440) was obtained from 
climate.onebuilding.org website under WMO Region 2. 
By modelling the LCZs in the Urban Weather Generator 
(UWG), EPW data were collected for all 65 prototypes. 
Using meteorological data from the rural weather sta-
tion, UWG generates a new urban EPW file and deter-
mines the hourly air temperature and humidity within 
the urban canopy. The article by Bueno et al. (2014) de-
scribes the workf low and the four UWG modules. The 
evaluation of the UWG against field data from Basel, 
Switzerland, and Toulouse, France, has yielded satisfac-
tory results (Bueno et al., 2013). Generally, urban energy 
evaluation is conducted through statistical data, physi-
cal models, and degree days (Li et al., 2021). The physi-
cal model method has high accuracy in calculating en-
ergy data when compared with the other two methods 
(Chen et al., 2018). The inf luence of the microclimate in 
the cooling load can be calculated with better accuracy 
in simulation models (Li et al., 2021). The district cooling 
load of the LCZ was obtained from the URBANopt com-
ponent through the geoJSON file. Dragonf ly was used to 
calculate the district cooling load data by converting the 
simulation model into a geoJSON file. The blocks in the 
urban prototypes were divided into seven zones (Z1-Foy-
er, Z2 - Guest room, Z3 - Of fice space, Z4 - Living room, 
Z5 - Pantry, Z6 - Bed Room, Z7 - Bath and Z8 - Bed Room) 
(Figure 2c). Zone 6 and Zone 8 were fixed as air-condi-
tioned space for the simulation. The model’s simulation 
settings and physical parameters were presented in Ta-
ble 1 and Table 2, adapted from (Kolhatkar et al., 2022). 

Table 1. Building Properties

Properties Inputs

Floor height All floors 4 m

No of Floors Low, Mid and High 1, 3.5 and 7

Wall thickness 0.23 m

Construction Type Bricks and Concrete

U-Value of wall For 
all 
the 
Zones

0.38 W/Sq.m. K

U-Value of roof 0.25 W/Sq.m. K

U -Value of glazing 2.60 W/Sq.m. K

WWR 0.25 (All directions)

SHGC of glazing 0.65

Air-conditioned zones 65 Prototypes Zone 6 and Zone 8

https://climate.onebuilding.org/
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Figure 2. Prototype classification through LCZ method a) Sub-classification system b) Urban morphology model c) Model 
preparation method d) Urban morphology indicators
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Figure 3. Urban prototypes of local climatic zones
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Figure 4. Mapping method (a) Image processing method (b) Map of Tamil Nadu state in India (c) Map of Tiruchirappalli 
city (KK Nagar) (d) Satellite image of the study area



Geographica Pannonica | Volume 28, Issue 3, 182–204 (September 2024)G. R. Madhavan, Dr D. Kannamma

| 190 |

Figure 5. Clustering Results (a) UMIs (b) Co-relation and VIF Matrix of UMIs (c) Inertia values (d) Silhouette scores (e) 
Individual silhouette scores (f) Distance from the average silhouette scores (Clusters) (g) ANOVA Results 
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Clustering and Validation
An unsupervised machine learning method (K-means) was 
used in this study, which groups the n observation into k 
clusters. It starts with a predetermined number of clusters 
(k) and n data points; the algorithm chooses cluster cen-
tres randomly. In this method, data points are categorized 
according to the closest cluster centre, and the process is 
achieved by minimizing the sum of square distances be-
tween any data point and its closest cluster centre within 
the cluster, as indicated by the equation presented in Jain 
(2010). Generally, the centroids are chosen randomly by 
the K-means algorithm. To avoid this, we have employed 
the centroid initialization technique known as k-means 
initialization to avoid the random selection of centroids. 
The most optimal initial centroid was chosen using this 
method, and the XLSTAT tool was used for this process. 
Many different approaches have been used to determine 
the number of clusters. For clustering analyzes, finding 
the ideal number of clusters is essential to avoid errors in 
the clustering process. For this research, we used the sil-

houette score method, which calculates an overall repre-
sentative score to test the effectiveness of the clustering. It 
works based on the compactness of individual clusters (in-
tra-cluster distance) and the separation between clusters 
(inter-cluster distance) as given in equation 1.

si = bi−ai
max bi,ai( )   

(1)

ANOVA and MANCOVA are the primary criteria for val-
idating previous studies’ clustering results (Panuwatwan-
ich & Nguyen, 2017). For the external criterion analysis, 
we selected the average air temperature (Ta) of the LCZs as 
the dependent variable. The external variable in this study 
cannot be a factor inf luencing or providing information 
about urban morphology indicators. One-way ANOVA was 
used in several studies to validate the results of clustering 
analyses. So, one-way ANOVA is utilized to confirm the 
clustering results by finding whether the mean air tem-
perature (Ta) f luctuates among the clusters.

Table 2. Simulation settings

UWG parameters Inputs

Building program Midrise Apartment’s

ASHRAE Climate zone 2 - Hot

Building Age 1980 - 2004

Construction Type (Mass) Bricks and Concrete

Urban Patch size 210 M X 210 M

Boundary conditions UBL at Daytime 1000 m

UBL at Nighttime 450 m

Inversion height 200 m

Previous Layer Thickness 0.95

Conductivity 1 W/m-K

Volumetric heat capacity 1.6e6 J/cu.m-k

Impervious layer Thickness 0.95

Conductivity 1 W/m-K

Volumetric heat capacity 1.6e6 J/cu.m-k

Anthropogenic Heat capacity Same for all Zones 4 W/Sq.m

Occupation Schedule Midrise_Appartment_Occ

Simulation Period Summer (1st -Mar – 31st May) TMY

Set Temperature Based on the survey taken from residents 26.3°C (Summer)
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Results and Discussion 

Validating the clustering results
It is essential to determine the suitable number of clus-
ters for the k means in the clustering algorithm. Unlike 
the hierarchical clustering method, k means cannot inde-
pendently determine the number of clusters. The silhou-
ette score method was used to fix the final number of clus-
ters. The maximum value of the cluster was fixed as 10 (k) 
since increasing the k value decreases the inertia within 
the cluster (Figure 5). In various studies Silhouette score 
helps to find the effectiveness of the clustering algorithm. 
In the evolution of the silhouette score, a sharp rise was 
observed at k=7 (Figure 5d). In contrast, the inertia score 
steeply decreases at k=7, near 100 (Figure 5c). There was no 
significant decrease in the inertia level after 7, from which 
the results concluded that the data can be divided into 7 
clusters (Table 2). The average silhouette score was 0.475; 
Figure 5e denotes that a significant number of individu-
al silhouette score were higher than the average, which ex-
plains that the clustering algorithm was well performed. 
To validate the clustering results, one-way ANOVA was 
used in this research. Figure 5g demonstrates the distance 
of the air temperature data from the centroid for all pro-
totypes. The research concludes that there is a significant 
amount of deviation between the data with a 95% confi-
dence interval. The specifics of the ANOVA test are denot-
ed in Table 4 and Table 5.

Analyzing the clustering results.
Seven Groups (G1-G7) were acquired through clustering 
results. Cluster 5 has the lowest number of zones (Z=5), 
while Cluster 7 has the highest number of zones (Z=13) 
(Table 6). The zones deprived of land cover were grouped 
along with those with land cover configurations. low-rise 
configurations were grouped along with the high-rise. The 
combination of open configurations and compact configu-
rations was found in G6 and G7. Since the intra-cluster dif-
ference is less than the inter-cluster difference, the clus-

tering results were fit to further analyze (Table 7). Aspect 
ratio (AR), Sky view factor (SVF), Height of roughness el-
ement (HRE), Stand deviation of building height (SH), 
Permeable surface fraction (PSF), Floor area ratio ((FAR), 
Ground space index (GSI) and Urban district cooling load 
(UDCL) were the variables used for the cluster analysis. 
The highest aspect ratio and lowest sky view factor were 
found in compact and open built with landcover config-
urations and compactly built configurations. The height 
of the roughness element (HRE) and Standard deviation 
of building heights (SH) were high in compact-built forms 
and low in open-built forms. The values of the PSF were 
between 0.2 and 0.4, which shows that the mixed morphol-
ogies were similar in the distribution of permeable sur-
faces. The GSI values were high in compact-built config-
urations compared to open-built configurations, and a 
distinct difference was seen between the configurations 
with land cover and those deprived of land cover. The f loor 
area ratio was high in LCZ 142 (Compact high rise and 
mid-rise with open high-rise category) and low in LCZ 36A 
(Compact low rise and open low rise with dense trees cate-
gory). The clustering results indicate that unrelated mixed 
spatial configurations can be grouped due to the similari-
ties in the distribution of the classes. Thus, it explains that 
when dealing with complex urban forms, larger grid siz-
es are essential to capture the regional geographical fea-
tures of the city.

Inter-cluster variation 
The clustering results indicated that 65 typologies can be 
clustered into seven groups (G1-G7). The minimum and 
maximum distance between the cluster centroids were 2.4 
and 18.9 (Table 7). Among all the groups, G1 has high AR, 
HR, FAR and SH due to the distribution of morphologies 
within the group (Figure 6a & Figure 7). Similarly, G1 has a 
high urban cooling load (284.13 Gjs) in summer, and 40% of 
the zones in G1 come under compact with open-built con-

Table 3. Numbers of Iterated clusters

Clusters C1 C2 C3 C4 C5 C6 C7 C8 C9

Silhouette scores 0.56 0.49 0.47 0.46 0.45 0.52 0.45 0.46 0.47

No of clusters k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

Table 4. ANOVA Results

Source DF Sum of squares Mean squares F Pr > F

Model 9.000 5.266 0.585 2.343 0.026

Table 5. Cluster centroid data.

Variable Obs. with missing data Obs. without missing data Minimum Maximum Mean Std. deviation

Distance to centroid 0 65 0.000 2.495 0.792 0.545
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figuration. G1 has low SVF and GSI due to the distribution 
of fewer landcover zones within the cluster. G2 has high 
GSI and low FAR since 40 % of them were compact low and 
mid-rise configurations (Figure 6b & Figure 8). The differ-
ence in the PSF between the groups was insignificant due 
to repetitive urban prototypes. The difference between G3 
and G5 was also insignificant due to the distribution of 
similar morphologies in the groups except the open-built 
type, which was present for 15% (Figure 6b). Similarly, G4 
and G7 have low differences, which can be comprehended 
by the difference between the centroids (Table 7). The GSI 
was similar between the groups except for G2 since it was 
the only cluster with fewer land cover types. G1 and G5 have 
high differences in the values of the variables selected for 
the clustering. Similarly, G4 and G1 have high dissimilar-
ities when compared with other groups. Open-built type 

was present only in G3, and compact-built morphology only 
in G1. The difference between the centroids of G1 and G3 
proves that the clusters were separated far from each oth-
er (Table 8). Similarly, the G2 and G5 clusters were separat-
ed far from each other, which can be understood by the dis-
tribution of cluster centroids. Compact with open built and 
land cover typology has maximum share with G5 (70%) and 
G1 (30%). The results conclude that the variations between 
the clusters were due to the distribution of urban morphol-
ogy within the spatial arrangements. The current study pro-
vides a novel approach in LCZ modelling for complex city 
forms, and using this approach, researchers can benefit by 
finding suitable morphology for the cities under warm and 
humid climate. This study also helps to create morphologi-
cal clusters for the cities to research the distribution of UHI 
in different clusters. 

Table 6. Clustering Result

Cluster G1 G2 G3 G4 G5 G6 G7

Number of objects by cluster 9 10 9 9 5 10 13

Within-cluster variance 3.414 1.891 1.107 0.801 1.706 0.862 0.609

Minimum distance to centroid 0.487 0.185 0.433 0.277 0.408 0.137 0.053

Average distance to centroid 1.471 1.078 0.862 0.725 1.040 0.767 0.668

Maximum distance to centroid 2.890 2.402 2.062 1.841 1.908 1.346 1.143

Urban Prototypes

14A 24A 34A 35B 36C 25A 35A

15A 15B 25B 26C 35C 24B 34B

14B 16A 16C 36A 36B 15C 25C

123 14C 26A 34C 536 16B 26B

142 153 24C 263 56C 163 253

143 162 456 436 516 526

152 416 243 23C 425 435

415 13A 426 46C 13B 23A

12A 12B 46A 56B 13C 23B

12C 45A 45B

45C

46B

56A

Table 7. Distance between the cluster centroids

Clusters G1 G2 G3 G4 G5 G6 G7

G1 0

G2 4.013 0

G3 10.088 6.078 0

G4 15.417 11.405 5.335 0

G5 18.989 14.977 8.908 3.574 0

G6 7.328 3.319 2.761 8.093 11.666 0

G7 13.023 9.011 2.938 2.397 5.971 5.697 0
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Table 8. Variation between and within the clusters

Variation inertia Absolute Percent

Within-cluster 81.473 3.75%

Between-clusters 2089.268 96.25%

Total inertia 2170.741 100.00%

Identified LCZs in the Research area
The study area was divided into 195 urban patches using 
200 m x 200 m grids. Each urban patch was tested through 
image classification model in Python by randomly gener-
ating the images. Out of 195 urban patches, 15 images were 
not able to be classified due to the absence of build cov-
er configurations. 180 images were classified successful-
ly, and their representative groups were provided in Fig-
ure 9a. G5 and G6 were in small ratios with LCZ 56C, LCZ 
45A and LCZ 13B configurations. Similarly, G1 and G3 were 
distributed for 15% of the study area. LCZ 34A and LCZ 
12A were the configurations under the G1 and G3. 32.2% of 
the distribution was under G7 and 34.4% under G2 (Figure 
9b). The confusion matrix of the group indicates the im-
age classification accuracy was high in G2, G7 and G4 since 
they share 80.4% of the study area. The precision, recall and 
F1 scores of the 3 groups are given in Table 9. LCZ 12A, LCZ 
12B, LCZ 12C, LCZ 13A, LCZ 416, LCZ 153, LCZ 34A, LCZ 
35B, LCZ 23C, LCZ 34C, LCZ 56C, LCZ 45A, LCZ 13B, LCZ 
53A, LCZ 23A, LCZ 45B, LCZ 23B and LCZ 56A were present 
in the study area (Figure 10a). The morphology characters 
of the classified urban patches were extracted and co-re-
lated with the UMI values of Urban prototypes. For vali-
dation, 18 LCZ configurations in the study area were com-
pared with their urban prototypes. The RMSE values for 
the respective indicators are given in Figure 10b. The clas-
sification results conclude that 90% of the study area has 
configurations with dense and scattered trees. The pres-
ence of open high-rise and compact high-rise urban con-
figurations was less than 7%. The confusion matrix pre-
sented in Figure 10c denotes the total number of images 
classified accurately under each group.

Table 9. Classification validation table

Groups Precision Recall F1-score

Group 2 82.85% 85.51% 84.91%

Group 7 88.50% 83.79% 85.32%

Group 4 55.82% 59.37% 56.63%

Energy Performance Investigation
Investigation of energy performance was conducted 
through 2 objectives: (a) analyzing the cooling load con-
sumption for all combinations of 65 zones and (b) Analyz-
ing and ranking the performance of the classified spatial 
configurations present in the city. The cooling load con-
sumption for each LCZ was calculated through a simula-
tion model in URBANopt. The SET temperature was fixed 
constant for all zones so that the results could be com-
pared without deviation of occupant’s behaviour. The 
heat map of the energy consumption is shown in Figure 
11e. The spatial configurations deprived of vegetation have 
higher energy consumption than other types of configura-
tions. Compared to other zones, open high-rise configu-
rations and compact high-rise configurations with dense 
trees consume high energy for cooling the indoor spac-
es. Compact midrise configurations and compact low-rise 
configurations (23A, 23B and 23C) consume less than open 
morphologies in a few combinations (Figure 11a). Dense-
ly vegetated configurations like 15A and 14B classes ref lect 
high variation in the energy consumption between the 
combinations. The impact of vegetation in reducing the 
cooling load was significantly low in high-rise zones com-
pared to low-rise zones. Open configuration with a com-
bination of compact configurations consumes high ener-
gy when there is a lack of dense or scattered trees. Further 
analyzes were conducted on the morphologies present in 
the city. The simulated data were plotted against the re-
al-time cooling energy data to validate the urban proto-
type model. TNEB (Tamil Nadu Electricity Board) data 
were used to calculate the rest time cooling load for the 
buildings. The RMSE value was 0.55, and all 18 morphol-
ogies were used for the validation (Figure 11c). The distri-
bution of the groups was analysed and mapped in Figure 
11. We found that approximately G2, G4 and G7 were pres-
ent in over 80% of the study area. So, the study was fur-
ther conducted by analyzing of the morphologies in G2, 
G4 and G7. LCZ 416 (open high rise and compact high rise 
with open low-rise zones) consume high energy for cooling 
the spaces. Combination 2, which is 60% of the first class, 
20% of the second class, and 10% of the third class, has high 
cooling load consumption in most morphologies. The low-
est cooling was found at 23C (compact mid-rise and low-
rise with shrubs), which is 150GJs. The morphologies in 
Group 2 consume a high cooling load when compared with 
Group 4 and Group 7 (Figure 11d). 



Geographica Pannonica | Volume 28, Issue 3, 182–204 (September 2024)G. R. Madhavan, Dr D. Kannamma

| 195 |

Figure 6. LCZ graphs (a) UMI values for each group (b) LCZ distribution for each group
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Figure 7. UMI values of urban prototypes
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Figure 8. UMI values of urban prototypes
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Figure 9. Study area classification results (a) Classification map (b)Distribution of groups in the study area (c) Confusion 
Matrix of image classification (Groups)
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Conclusion

The current study takes KK Nagar in Tiruchirappalli as an 
example and analyzes the impact of urban spatial geogra-
phy on the air-conditioning energy usage. In this study, we 
have proposed a novel method for classifying the city using 
a two-layer subclassification system. Since major Indian 
cities are unplanned settlements with more than two LCZ 
in a grid size of 0.25 sq. km, this study helps classify the 
highly heterogeneous morphology in cities. The gird size 
chosen to create the morphology was 38,709 Sq.m. Through 
this extensive grid size, we can retain more regional geo-
graphical features of the city compared to using smaller 
grids. The research intends to concentrate on the complex 
urban forms which were not addressed in previous studies 
to the best of our knowledge. Urban morphology signifi-
cantly inf luences the energy consumption of buildings, 
resulting in a reduction in cooling load Javanroodi et al. 
(2018). The results of the current study support Javanroo-
di et al. (2018) statement. The impact of mixed morphol-
ogies on energy consumption differed from the planned 
cities. Compared to the other studies on the impact of ur-
ban forms on energy consumption, this research makes a 

significant contribution in explaining the complex urban 
structures and their impact on cooling energy consump-
tion. For urban planning, we have found that emphasizing 
the urban morphology layouts and green cover ratios, such 
as dense trees (Highly vegetated), Scattered trees (sparse-
ly vegetated) and shrubs (lowly vegetated), is crucial in 
determining the cooling load consumption in a compact 
mid-rise and open low-rise morphologies with lands cov-
ers. These findings provide insights to urban planners and 
designers in reducing the energy taken for cooling indoor 
spaces in mixed morphologies. In policy development, our 
research can serve as a reference for policymakers. For in-
stance, identifying high energy-consuming urban patch-
es and installing PV panels to reduce the on-grid energy 
usage. Furthermore, our research demonstrated a work-
f low for classifying the city morphologies into clusters 
based on their spatial characteristics. It is worth noting 
that previous studies have explored the impact of urban 
morphology on cooling loads, including a study conduct-
ed by Kotharkar et al. (2022) in which the author explains 
that lower cooling loads were seen in open morphologies 

Figure 10. Study area classification results (a) Confusion matrix of classified images (b) RMSE values for validating the urban prototypes
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Figure 11. Energy simulation results (a) Cooling load of city LCZs (b) Frequency of cooling loads (c) RMSE values for 
predicted and actual energy (d) Ranking of groups based on the cooling loads (e) Cooling loads Heat map for all urban 
prototypes
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with high vegetation cover. Similarly, a study conducted 
in China shows that low and medium-rise structures use 
more energy for cooling and explains that compact mid-
rise configuration’s cooling demands were higher than 
open high-rise (Yang et al., 2022). This study identifies the 
intricate details in urban morphology at the neighborhood 
scale through the comparative analysis of different LCZs. 
It was found that the impact of vegetation on cooling ener-
gy consumption of open and compact high-rise along with 
mid-rise configuration is low. It also explains that increas-
ing the green cover ratio will not help in reducing ener-
gy consumption for mixed high and mid-rise morpholo-
gies. This study is limited only to residential buildings and 
hotels, and the results will not be applicable to commer-
cial or office buildings with 8-hour operation slots. There 
is a scope for future research in studying the arrangement 
pattern of the buildings and its impact on the reduction of 
heating loads in cold regions. 

The important results of our investigation are as fol-
lows:

a) An innovative method for categorizing the complex 
urban structure of a city. The findings provide valua-
ble design for urban planners and energy policymak-
ers seeking to decrease cooling energy consumption 

through form-based codes. Our classification ap-
proach can be used to classify the morphologies for 
other cities in future research. This study provides 
broad insights into sustainable urban development 
worldwide.

b) In the study area, LCZ 23C (Compact mid-rise and 
low-rise with sparse vegetation), 34C (Compact low-
rise and open high-rise with sparse vegetation) and 
35B (Compact low-rise and open mid-rise with scat-
tered vegetation) urban forms needed less energy for 
air-conditioning in residential neighborhood. The in-
tervention of open or compact low rise in the mixed 
morphologies reduces the cooling energy consump-
tion drastically. 

c) The high frequency of cooling load was between 
150Gjs to 200Gjs in the city (Figure 11b). It indicates 
that the cooling load reduction potential is high in 
the city when compared to the study area of Nagpur, 
which was researched by Kotharkar et al. (2022) 

d) The Open and compact high-rise with low-rise struc-
tures consumes high cooling energy (>400Gjs), which 
indicates that the high-rise structures with open 
low-rise combinations are not suitable for warm and 
humid climate conditions.
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