Danube River Discharge at Bezdan Gauging Station (Serbia) and its correlation with Atmospheric Circulation Patterns

  • Dragan Dolinaj Climatology and Hydrology Research Center, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
  • Igor Leščešen Climatology and Hydrology Research Center, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
  • Milana Pantelić Climatology and Hydrology Research Center, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
  • Marko Urošev Geographical Institute “Jovan Cvijić”, Serbian Academy of Sciences and Arts, Djure Jakšića 9, 11000 Belgrade, Serbia
  • Dragana Milijašević Joksimović Geographical Institute “Jovan Cvijić”, Serbian Academy of Sciences and Arts, Djure Jakšića 9, 11000 Belgrade, Serbia
Keywords: atmospheric circulation patterns, trends, Danube River, discharge, Serbia,

Abstract


For understanding hydroclimatological process chain it is crucial to identify relations between large-scale climatic circulations and river discharge. The Danube is one of the most important European waterways, flowing 2.857 kilometers across the Europe and with 817.000 km2 basin. Danube River average and maximum discharges are correlated with eight atmospheric circulation patterns indices: AOi, EAi, EA/WRi, ENSOi, MOi, NAOi, SCANDi and WeMOi in 65 years period at the Bezdan gauging station in Serbia. Obtained results showed that precipitation, MOi and WeMOi have constant and dominant influences on Danube River average discharge at Bezdan gauging station, while maximum discharge is mainly influenced by precipitation and MOi. All registered correlations are positive.

 

References

Augustus, S.P.D.G., Jayabalan, M.. & Seiler, J. G. (2002). Evaluation and bioinduction of energy components of Jatropha curca, Biomass and Bioenergy 23 (3), 161-164. https://doi.org/10.1016/S0961-9534(02)00044-2

Arnell, N.W., Gosling, S.N. (2013). The impacts of climate change on river flow regimes at the global scale. J. Hydrol. 486, 351–364. http://dx.doi.org/10.1016/j.jhydrol.2013.02.010.

Baldi, P. & Long, D. A. (2001). A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes, Bioinformatics 17 (6), 509-519. https://doi.org/10.1093/bioinformatics/17.6.509

Banha, F. & Anastacio P.M. (2011). Interactions between invasive crayfish and native river shrimp, Knowledge and Management of Aquatic Ecosystems, 401 (17). https://doi.org/10.1051/kmae/2011033

Bomin, S. & Shuqing, S. (1994). The analysis on the features of the atmospheric circulation in preceding winters for the summer drought and flooding in the Yangtze and Huaihe river valley, Advances in Atmospheric Sciences 11 (1), 79-90. https://doi.org/10.1007/BF02656997

Brunetti M, Buffoni L, Maugeri M, Nanni T. 2000. Precipitation intensity trends in northern Italy. International Journal of Climatology

: 1017–1031.

Caspary, J.H. (1995). Recent winter floods in Germany caused by changes in the atmospheric circulation across Europe. Physics and Chemistry of the Earth 20 (5-6), 459-462. https://doi.org/10.1016/S0079-1946(96)00006-7

Dettinger, M.D., and H.F. Diaz. (2000). Global characteristics of streamflow seasonality. J. Hydrometeor., 1, 289– 310.

Gosling, S.N., Zaherpour, J.J., Mount, N.J., Hattermann, F.F., Dankers, R., Arheimer, B., Breuer, L., Ding, J., Haddeland, I., Kumar, R., Kundu, D., Liu, J., van Griensven, A., Veldkamp, T.I.E., Vetter, T., Wang, X., Zhang, X. (2017). A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C. Clim. Change 1–19. http://dx.doi.org/10.1007/s10584-016-1773-3.

Hurrell, J.W., Kushnir, Y., Ottersen, G. & Visbeck, M. (2003). An overview of the North Atlantic Oscillation. The North Atlantic Oscillation – Climatic Significance and Environmental Impact. Geophysical Monograph 134, 1-35. DOI:10.1029/GM134

Kingston, G.D., Todd, C.M., Taylor, G.R., Thompson, R.J. & Arnell, W.M. (2009). Uncertainty in the estimation of potential evapotranspiration under climate change, Geop. Res. Leter. 36.

Kundzewicz, Z.W., Mata, L.J., Arnell, N., Döll, P., Kabat, P., Jiménez, B., Miller, K., Oki, T., Şen, Z. & Shiklomanov, I. (2007). Freshwater resources and their management. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (ed. by M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden & C. E. Hanson), 2007, 173–210. Cambridge University Press, UK.

Ionita, M., Rimbu, N. (2008). Prediction of spring Elbe discharge based on stable teleconnections with winter global temperature and precipitation, Journal of Climate, DOI:10.1175/2008JCLI2248.1.

Karl TR, Knight RW. 1998. Secular trends of precipitation amount, frequency, and intensity in the United States. Bulletin of the American Meteorological Society 79: 231–241.

Lavers, D.A., Allan, R.P., Wood, E.F., Villarini, G., Brayshaw, D.J. & Wade, A.J. (2011). Winter floods in Britain are connected to atmospheric rivers, Geophys. Res. Lett. 38.

Leščešen, I., Pantelić, M., Dolinaj, D., Stojanović, V. & Milošević, D. (2015). Statistical analysis of Water Quality Parameters of the Drina River (West Serbia), 2004-2011, Polish Journal of Environmental Studies 24 (2), 555-561. https://doi.org/10.15244/pjoes/29684

Osborn TJ, Hulme M, Jones PD, Basnett TA. 2000. Observed trends in the daily intensity of United Kingdom precipitation. International Journal of Climatology 20: 347–364.

Ntakirutimana, T., Du, G., Guo, J., Gao, X. & Huang, L. (2013). Pollution and potential ecological risk assessment of heavy metals in a lake, Pol. J. Environ. Stud. 22 (4), 1129-1134.

Wedgbrow, C.S., Wilby, R.L., Fox, H.R. & O'Hare, G. (2002). Prospects for seasonal forecasting of summer drought and low river flow anomalies in England and Wales, Int. J. Climatol. 22, 219–236. https://doi.org/10.1002/joc.735

Pantelić, M., Dolinaj, D., Savić, S., Stojanović, D. & Nađ, I. (2012). Statistical Analysis of water quality parameters of Veliki Bački Canal (Vojvodina, Serbia) in period 2000-2009, Carpathian Journal of Earth and Environmental Sciences, 7 (2), 255.

Paillisson, J.M., Soudieux, A. & Damien, J.P. (2011). Capture efficiency and size selectivity of sampling gears targeting red-swamp crayfish in several freshwater habitats, Knowledge and Management of Aquatic Ecosystems 401 (06). https://doi.org/10.1051/kmae/2011015

Parvulescu, L., Pacioglu, O. & Hamchevici, C. (2011). The assessment of the habitat and water quality requirements of the stone crayfish (Austropotamobiustorrentium) and noble crayfish (Astacusastacus) species in the rivers from the Anina Mountains (SW Romania), Knowledge and Management of Aquatic Ecosystems 401 (03). https://doi.org/10.1051/kmae/2010036

Peterson, J.B., Holmes, M.R., McClelland, W.J., Vorosmarty, J.C., Lammers, B.R., Shiklomanov, I.A. & Rahmstorf, S. (2002). Increasing River Discharge to the Arctic Ocean, Science 298 (5601), 2171-2173. DOI: 10.1126/science.1077445

Peterson, H.D. (2013). Aspects of Climate Variability in the Pacific and the Western Americas. American Geophysical Union. DOI:10.1002/9781118664285

Rimbu, N., Boroneant, C., Buta, C. & Dima, M. (2002). Decadal variability of the Danube river flow in the lower basin and its relation with the North Atlantic Oscillation, International Journal of Climatology 22, 1169-1179. DOI:10.1002/joc.788

Rimbu, N., Dima, M., Lohmann, G., & Stefan, S. (2004). Impacts of the North Atlantic Oscillation and the El Nin˜o–Southern Oscillation on Danube river flow variability, Geophysical Research Letters 31 (23). doi:10.1029/2004GL020559

Maguire, I., & Klobučar, G. (2011). Size structure, maturity size, growth and condition index of stone crayfish (Austropotamobiustorrentium) in North-West Croatia, Knowledge and Management of Aquatic Ecosystems 401 (12). https://doi.org/10.1051/kmae/2011026

Milošević, D., Savić, S., Pantelić, M., Stankov, U., Žiberna, I., Dolinaj, D. and Leščešen, I. (2015). Variability of seasonal and annual precipitation in Slovenia and its correlation with large-scale atmospheric circulation, Open Geosciences 8, 593-605. DOI 10.1515/geo-2016-0041

Milošević, D., Savić, S., Stankov, U., Žiberna, I., Pantelić, M., Dolinaj, D. and Leščešen, I. (2017). Maximum temperatures over Slovenia and their relationship with atmospheric circulation patterns, Geografie 122 (1), 1-20.

Murphy, J.S. and Washington, R. (2001). United Kingdom and Ireland precipitation variability and the North Atlantic sea-level pressure field. Inter. Int. J. Climatol. 21, 939–959. https://doi.org/10.1002/joc.670

Uvo, B.C. (2003). Analysis and regionalization of northern European winter precipitation based on its relationship with the North Atlantic oscillation, International Journal of Climatology 23, 10, 1185-1194. DOI: 10.1002/joc.930

Xiaolong, W., Jingyi, H., Ligang, X. and Qi, Z. (2010). Spatial and seasonal variations of the contamination within water body of the Grand Canal, China, Environmental Pollution 158 (5), 1513-1520. DOI: 10.1016/j.envpol.2009.12.018

Yang, C.Y., Lee, G.S., Lee, K.H., Kim, K.M. and Lee, H.S. (2002). A Piperidine Amide Extracted from Piper longum L. Fruit Shows Activity against Aedes aegypti Mosquito Larvae, Jornal of Agricultural and Food Chemistry 50 (13), 3765-3767. DOI: 10.1021/jf011708f

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/teleconnections.shtml

http://www.ub.edu/gc/en/2016/06/08/wemo/

http://www.cru.uea.ac.uk/cru/data/moi/

Published
2019/03/26
Section
Original Research