Identifying hot and cool spots in the city centre based on bicycle measurements: the case of Olomouc, Czech Republic

  • Michal Lehnert Palacký University Olomouc
  • Josef Kubeček Palacký University Olomouc
  • Jan Geletič Czech Academy of Sciences
  • Martin Jurek Palacký University Olomouc
  • Jindřich Frajer Palacký University Olomouc
Keywords: urban climate, local climate zones, mobile measurement,

Abstract


In this study we focus on a detailed analysis of air temperature in the city centre of Olomouc, using a bicycle for mobile measurements. We studied the spatial pattern of air temperature, analysed temperature differences between local climate zones (LCZs) and identified hot spots and cool spots in the city centre. The results point to a significant influence of microclimate and local climate on the field of temperature. In the daytime, hotspots occurred namely in LCZ 8 and E and in the well irradiated spaces within LCZ 2. Larger areas of scattered trees (LCZ B) in combination with watercourses created cool spots with a cooling potential for their surroundings. During night time, the warmest spots were detected mostly in LCZ 2 and the coolest spots in areas with low plants (LCZ D).

Author Biographies

Michal Lehnert, Palacký University Olomouc
Department of Geography, Faculty of Science
Josef Kubeček, Palacký University Olomouc
Department of Geography, Faculty of Science
Jan Geletič, Czech Academy of Sciences
1) Institute of Computer Science
2) Global Change Research Institute
Martin Jurek, Palacký University Olomouc
Department of Geography, Faculty of Science
Jindřich Frajer, Palacký University Olomouc
Department of Geography, Faculty of Science

References

Alexander, P., & Mills, G. (2014). Local Climate Classification and Dublin’s Urban Heat Island. Atmosphere, 5(4), 755-774. doi:10.3390/atmos5040755

Beck, C., Straub, A., Breitner, S., Cyrys, J., Philipp, A., Rathmann, J., . . . Jacobeit, J. (2018). Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions. Urban Climate, 25, 152-166. doi:10.1016/j.uclim.2018.04.007

Bowler, D.E., Buyung-Ali, L., Knight, T.M., & Pullin, A.S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147-155. doi:10.1016/j.landurbplan.2010.05.006

Broadbent, A.M., Coutts, A.M., Tapper, N.J., Demuzere, M., & Beringer, J. (2018). The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment. Theoretical and Applied Climatology, 134(1-2), 1-23. doi:10.1007/s00704-017-2241-3

Buttstädt, M., Sachsen, T., Ketzler, G., Merbitz, H., & Schneider, C. (2011). A new approach for highly resolved air temperature measurements in urban areas. Atmospheric Measurement Techniques Discussions, 4(1), 1001-1019. doi:10.5194/amtd-4-1001-2011

Cai, M., Ren, C., Xu, Y., Lau, K.K., & Wang, R. (2018). Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology – A case study of Yangtze River Delta, China. Urban Climate, 24, 485-502. doi:10.1016/j.uclim.2017.05.010

CZSO. (2018). Veřejná databáze, Vše o území: Olomouc (okres Olomouc), vybrané údaje za obec. Prague: Czech Statistical Office. (Available at: https://vdb.czso.cz/, 15.11.2018).

Dobrovolný, P., Řezníčková, L., Brázdil, R., Krahula, L., Zahradníček, P., Hradil, M., . . . Kolejka, J. (2012). Klima Brna: Víceúrovňová analýza městského klimatu. Brno: Masarykova univerzita.

Dobrovolný, P., & Krahula, L. (2015). The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic. Moravian Geographical Reports, 23(3), 8-16. doi:10.1515/mgr-2015-0013

Fenner, D., Meier, F., Scherer, D., & Polze, A. (2014). Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Climate, 10, 308-331. doi:10.1016/j.uclim.2014.02.004

Gál, T., Skarbit, N., & Unger, J. (2016). Urban heat island patterns and their dynamics based on an urban climate measurement network. Hungarian Geographical Bulletin, 65(2), 105-116. doi:10.15201/hungeobull.65.2.2

Geletič, J., & Lehnert, M. (2016). GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Moravian Geographical Reports, 24(3), 2-12. doi:10.1515/mgr-2016-0012

Geletič, J., Lehnert, M., & Dobrovolný, P. (2016). Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities. Remote Sensing, 8(10), 788. doi:10.3390/rs8100788

Geletič, J., Lehnert, M., & Dobrovolný, P. (2016). Modelled spatio-temporal variability of air temperature in an urban climate and its validation: a case study of Brno, Czech Republic. Hungarian Geographical Bulletin, 65(2), 169-180. doi:10.15201/hungeobull.65.2.7

Geletič, J., Lehnert, M., Savić, S., & Milošević, D. (2018). Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Science of The Total Environment, 624, 385-395. doi:10.1016/j.scitotenv.2017.12.076

IPCC. (2014). Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge-New York: Cambridge University Press.

Leconte, F., Bouyer, J., Claverie, R., & Pétrissans, M. (2015). Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Building and Environment, 83, 39-49. doi:10.1016/j.buildenv.2014.05.005

Lehnert, M., Geletič, J., Husák, J., & Vysoudil, M. (2015). Urban field classification by “local climate zones” in a medium-sized Central European city: the case of Olomouc (Czech Republic). Theoretical and Applied Climatology, 122(3-4), 531-541. doi:10.1007/s00704-014-1309-6

Lehnert, M., Geletič, J., Dobrovolný, P., & Jurek, M. (2018). Temperature differences among local climate zones established by mobile measurements in two central European cities. Climate Research, 75(1), 53-64. doi:10.3354/cr01508

Lelovics, E., Unger, J., Gál, T., & Gál, C. (2014). Design of an urban monitoring network based on Local Climate Zone mapping and temperature pattern modelling. Climate Research, 60(1), 51-62. doi:10.3354/cr01220

Liu, Y., Peng, J., & Wang, Y. (2017). Diversification of Land Surface Temperature Change under Urban Landscape Renewal: A Case Study in the Main City of Shenzhen, China. Remote Sensing, 9(9), 919. doi:10.3390/rs9090919

Melhuish, E., & Pedder, M. (1998). Observing an urban heat island by bicycle. Weather, 53(4), 121-128. doi:10.1002/j.1477-8696.1998.tb03974.x

Müller, N., Kuttler, W., & Barlag, A. (2014). Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and Applied Climatology, 115(1-2), 243-257. doi:10.1007/s00704-013-0890-4

Mutani, G., & Fiermonte, F. (2016). Microclimate models for a sustainable and liveable urban planning. In R. Ingaramo & A. Voghera (Eds.), Topics and methods for urban and landscape design: From the river to the project, Urban and Landscape Perspectives. (pp. 183-209). Cham: Springer Nature. doi:10.1007/978-3-319-51535-9_11

Quanz, J.A., Ulrich, S., Fenner, D., Holtmann, A., & Eimermacher, J. (2018). Micro-Scale Variability of Air Temperature within a Local Climate Zone in Berlin, Germany, during Summer. Climate, 6(1), 5. doi:10.3390/cli6010005

Queck, R., & Goldberg, V. (2018). Cumulative Exposition of Pedestrians and Bikers in an Urban Environment. In 10th International Conference on Urban Climate/14th Symposium on the Urban Environment (6-10 August 2018, New York).

Quitt, E. (1956). Příspěvek k metodice výzkumu teplotních poměrů měst / Contribution to the methodology of research of temperature characteristics of towns. Meteorologické zprávy, 9(3), 69-74.

Rajkovich, N., & Larsen, L. (2016). A Bicycle-Based Field Measurement System for the Study of Thermal Exposure in Cuyahoga County, Ohio, USA. International Journal of Environmental Research and Public Health, 13(2), 159. doi:10.3390/ijerph13020159

Skarbit, N., Gal, T., & Unger, J. (2015). Airborne surface temperature differences of the different Local Climate Zones in the urban area of a medium sized city. In 2015 Joint Urban Remote Sensing Event (JURSE). (pp. 1-4). Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/jurse.2015.7120497

Skarbit, N., Stewart, I.D., Unger, J., & Gál, T. (2017). Employing an urban meteorological network to monitor air temperature conditions in the ‘local climate zones’ of Szeged, Hungary. International Journal of Climatology, 37, 582-596. doi:10.1002/joc.5023

Stewart, I.D. (2011). A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology, 31(2), 200-217. doi:10.1002/joc.2141

Stewart, I.D., & Oke, T.R. (2012). Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900. doi:10.1175/bams-d-11-00019.1

Stewart, I.D., Oke, T.R., & Krayenhoff, E.S. (2014). Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. International Journal of Climatology, 34(4), 1062-1080. doi:10.1002/joc.3746

Tolasz, R. (2007). Atlas podnebí Česka - Climate atlas of Czechia. Olomouc: Český hydrometeorologický ústav; Prague: Univerzita Palackého v Olomouci.

Tsin, P.K., Knudby, A., Krayenhoff, E.S., Ho, H.C., Brauer, M., & Henderson, S.B. (2016). Microscale mobile monitoring of urban air temperature. Urban Climate, 18, 58-72. doi:10.1016/j.uclim.2016.10.001

Unger, J. (2004). Intra-urban relationship between surface geometry and urban heat island: review and new approach. Climate Research, 27, 253-264. doi:10.3354/cr027253

Unger, J., Lelovics, E., & Gál, T. (2014). Local Climate Zone mapping using GIS methods in Szeged. Hungarian Geographical Bulletin, 63(1), 29-41. doi:10.15201/hungeobull.63.1.3

Wang, C., Middel, A., Myint, S.W., Kaplan, S., Brazel, A.J., & Lukasczyk, J. (2018). Assessing local climate zones in arid cities: The case of Phoenix, Arizona and Las Vegas, Nevada. ISPRS Journal of Photogrammetry and Remote Sensing, 141, 59-71. doi:10.1016/j.isprsjprs.2018.04.009

Published
2018/12/26
Section
Original Research