Point-bar development under human impact: case study on the Lower Tisza River, Hungary
Abstract
Point-bars are the most typical forms of floodplains; therefore, any change in the fluvial environment is reflected in their formation. We aimed to analyse the morphological characteristics and influencing factors of their formation along the Lower Tisza River (Hungary). Before the 1930-60s the morphological characteristics of point-bars were affected primarily by natural factors. However, after revetment constructions, the lateral migration of meanders ceased and channel became significantly narrower, therefore point-bar widths have decreased from 68 m to 19 m. Besides, vertical accumulation became dominant, thus, the youngest active point-bars are narrow and high.
References
Biedenharn, D.S., Thorne, C.R., & Watson, C.C. (2000). Recent morphological evolution of the Lower Mississippi River. Geomorphology, 34, 227-249. https://doi.org/10.1016/S0169-555X(00)00011-8
Bogárdi, J. 1971. Vízfolyások hordalékszállítása [Sediment transport of rivers]. Budapest: Akadémiai Kiadó (In Hungarian)
Covasnianu, A., & Tudose, O. (2013). Airborne LiDAR data and GIS technique outputs over Romanian Danube Plain with a special attention on geomorphology. Carpathian Journal of Earth and Environmental Sciences, 8(1), 117 – 126.
Daniel, J.F. (1971). Channel movement of meandering Indiana streams. USGS professional paper 732, 1-18.
Đieković, V., Anđelković, A., Milošević, N., Gajić, G., & Janić, M. (2013). Effect of reservoir on floodwave transformation. Carpathian Journal of Earth and Environmental Sciences, 8(2), 107 – 112.
Dietrich, W. E., & Smith, J. D. (1983). Influence of the point-bar on flow through curved channels. Water Resources Research, 19, 1173–1192. https://doi.org/10.1029/WR019i005p01173
Hernesz, P., 2015. Késő-pleisztocén és holocén ártérfejlődés az Alsó-Tisza mentén [Late Pleistocene and Holocene floodplain development in the Lower Tisza River]. Doctoral dissertation, University of Szeged, Department of Physical Geography and Geoinformatics, Szeged (In Hungarian)
Hickin, E.J. (1969). A newly-identified process of point-bar formation in natural streams. American Journal of Science, 267, 999-1010. https://doi.org/10.2475/ajs.267.8.999
Hickin, E.J. (1974). The development of meanders in natural river-channels. American Journal of Science, 274, 414–442. https://doi.org/10.2475/ajs.274.4.414
Hickin, E.J., & Nanson, G.C. (1975). The character of channel migration on the Beatton River, Northeast British Columbia, Canada. Geological Society of America Bulletin, 86(4), 487-494. https://doi.org/10.1130/0016-7606(1975)86<487:TCOCMO>2.0.CO;2
Hooke, J.M. (2007). Complexity, self-organisation and variation in behaviour in meandering rivers. Geomorphology, 91(3), 236–258. https://doi.org/10.1016/j.geomorph.2007.04.021
Hooke, J.M., &Harvey, A.M. (1983). Meander changes in relation to bend morphology and secondary flows. In Collinson, J., & Lewin, J. (Eds.), Modern and Ancient Fluvial Systems (pp. 121-132). International Association of Sediment Special Publication. https://doi.org/10.1002/9781444303773.ch9
Hooke, R.B. (1975). Distribution of sediment transport and shear stress in a meander bend. Journal of Geology, 83(5), 543-565.
Ihrig, D. (1973). A magyar vízszabályozás története [The history of river regulation works in Hungary]. Országos Vízügyi Hivatal, Budapest (In Hungarian)
Jackson, R.G. (1976). Depositional model of pointbars in the lower Wabash River. Journal of Sedimentary Research, 46(3), 579–594. https://doi.org/10.1306/212F6FF5-2B24-11D7-8648000102C1865D
Károlyi, Z. (1960). A Tisza mederváltozásai, különös tekintettel az árvízvédelemre [Channel changes in the Tisza River, with special regard to flood protection]. VITUKI 8, Budapest. (In Hungarian)
Kiss, T. (2014). Fluviális folyamatok antropogén hatásra megváltozó dinamikája: egyensúly és érzékenység vizsgálata folyóvízi környezetben [Changing dynamics of fluvial processes under human impact: investigation of equilibrium and sensitivity in river]. Academic dissertation, Szeged (In Hungarian)
Kiss, T. Fiala, K., & Sipos, Gy. (2008). Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary). Geomorphology 98(1-2), 96-110. https://doi.org/10.1016/j.geomorph.2007.02.027
Kiss, T., Horváth, R., & Fiala, K. (2018). Szabályozások hatására megváltozó medermintázat az Alsó-Tiszán: El fognak tűnni az övzátonyok? [Changing channel patterns due to river regulation in the Lower Tisza River: Are point-bars disappearing?] In Fazekas I., Kiss E., & Lázár I. (Eds.), Földrajzi Tanulmányok 2018 (pp. 259-262), Debrecen. (In Hungarian)
Kiss, T., Amissah, G.J., & Fiala, K. (2019a). Bank processes and revetment erosion of a large lowland river: Case study of the Lower Tisza River, Hungary. Water, 11(6), 1313. https://doi.org/10.3390/w11061313
Kiss T., Nagy J., Fehérváry I., & Vaszkó Cs. (2019b). (Mis)management of floodplain vegetation: The effect of invasive species on vegetation roughness and flood levels. Science of the Total Environment 686, 931-945. https://doi.org/10.1016/j.scitotenv.2019.06.006
Kiss, T., Fiala, K., Sipos, Gy., & Szatmári, G. (2019c). Long-term hydrological changes after various river regulation measures: Are we responsible for flow extremes?. Hydrology Research, 50(10), 417-430. https://doi.org/10.2166/nh.2019.095
van de Lageweg, W.I., van Dijk, W.M., Baar A.W., Rutten, J., & Kleinhans, M. G. (2014). Bank pull or bar push: what drives scroll-bar formation in meandering rivers?. Geology, 5(42), 319–322. https://doi.org/10.1130/G35192.1
Lászlóffy, W. (1982). A Tisza. Vízi munkálatok és vízgazdálkodás a Tisza vízrendszerében [The Tisza River. Regulation works and water management in the Tisza water system]. Budapest: Akadémiai Kiadó (In Hungarian)
Motta, D., Langendoen, E.J., Abad, J.D., & García M.H. (2014). Modification of meander migration by bank failures. Journal of Geophysical Research: Earth Surface, 119, 1026-1042. https://doi.org/10.1002/2013JF002952
Nanson, G.C., & Hickin, E.J. (1983). Channel migration and incision on the Beatton River. Journal of Hydraulic Engineering, 109, 327-337. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:3(327)
Pálfai, I. (2001). Magyarország holtágai [Oxbow lakes in Hungary]. Budapest: Közlekedési és Vízügyi Minisztérium (In Hungarian)
Rakonczai J, & Kozák P. (2009). Az Alsó-Tisza-vidék és a Tisza [The Lower Tisza Basin and the Tisza River]. Földrajzi Közlemények, 133(4), 385-395. (In Hungarian)
Romanescu, G., Jora, I., & Stoleriu, C. (2011). The most important high floods in Vaslui River Basin – causes and consequences. Carpathian Journal of Earth and Environmental Sciences, 6(1), 119-132.
Russell, C.E., Mountney, N.P., Hodgson, D.M., & Colombera, L. (2018). A novel approach for prediction of lithological heterogeneity in fluvial point-bar deposits from analysis of meander morphology and scroll-bar pattern. In Ghinassi, M., Colombera, L., Mountney, N.P. & Reesink, A.J.H. (Eds.), Fluvial Meanders and Their Sedimentary Products in the Rock Record (385-418). International Association of Sedimentologists Series Special Publication
Strick, R.J.P., Ashworth, P.J., Awcock, G., & Lewin, J. (2018). Morphology and spacing of meander scrolls. Geomorphology, 310, 57-68. https://doi.org/10.1016/j.geomorph.2018.03.005
Thorne, C.R. (1991). Bank erosion and meander migration of the Red and Mississippi Rivers, USA. In Van-de-Ven, F.H.M., Gutknecht, D., Loucks, D.P., & Salewicz, K.A. (Eds.), Hydrology for the Water Management of Large River Basins (pp. 301-313) (Proceedings of the Vienna Symposium, August 1991). International Association of Hydrological Sciences
Zinger, J.A., Rhoads, B.L., & Best, J.L. (2011). Extreme sediment pulses generated by bend cutoffs along a large meandering river. Nature Geoscience, 4, 675-678.