Precipitation, humidity and cloudiness in Podgorica (Montenegro) during the period 1951-2018

  • Dragan Burić University of Montenegro, Faculty of Philosophy, Department of Geography, Danila Bojovića bb, Nikšić, Montenegro
  • Miroslav Doderović University of Montenegro, Faculty of Philosophy, Department of Geography, Danila Bojovića bb, Nikšić, Montenegro
Keywords: precipitation, humidity, cloudiness, trend, Podgorica, Montenegro,

Abstract


This paper presents the results of a trend analysis of three climate elements: precipitation, cloudiness and humidity. Almost the entire period of instrumental measurements (precipitation and humidity) and visual observations (cloudiness) are covered. In the observed 68-year period (1951-2018), the trend of annual and seasonal precipitation amounts is insignificant. Though, there is a significant decrease in the number of days with precipitation ≥ 1 mm, which implies a movement towards more arid conditions. On the other hand, the number of days with extreme rainfall ≥ 40 and 50 mm is increasing. In Podgorica, the annual statistics of days with snow cover decreases as well. There is also a decrease in the relative humidity and cloudiness, and with both elements the trend is insignificant only in the autumn season. The results of the trend calculation show that the number of gloomy days is more intensively reduced than the number of increasing bright days. In general, the results of the research show that the climate of Podgorica tends to be more arid with more extreme weather events. The climate variations happening in this city are, to small amount, caused by the urbanization process. Podgorica has the character of an urban heat island in a cooler environment, with an average annual intensity of about 0.70C and the highest in winter (about 0.80C). The most symptomatic indicator of urbanization is temperature, but anthropogenic heat production in the city (asphalt, constructions, increase of aerosols, etc.) also affects other climate elements. Compared to the non-urban environment, Podgorica has a higher annual rainfall of 100 mm and a lower humidity of 3%, while this difference is not noticeable in the overall cloudiness.

 

Author Biography

Dragan Burić, University of Montenegro, Faculty of Philosophy, Department of Geography, Danila Bojovića bb, Nikšić, Montenegro
Department of Geography, Faculty of Philosophy Niksic

References

Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué, M., Herrmann, M., Marcos, M., Dubois, C., Padorno, E., Alvarez-Fanjul, E., & Gomis, D. (2015). Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Climate Dynamics, 45(9-10), 2775-2802. https://doi.org/10.1007/s00382-015-2507-3

Aleshina, M. A., Toropov, P. A., & Semenov, V. A. (2018). Temperature and Humidity Regime Changes on the Black Sea Coast in 1982-2014. Russian Meteorology and Hydrology, 43(4), 235-244. https://doi.org/10.3103/S1068373918040040

Arsenović, D., Lehnert, M., Fiedor, D., Šimáček, P., Středová, H., Středa, T., & Savić, S. (2019). Heat-waves and Mortality in Czech Cities: A Case Study for the Summers of 2015 and 2016. Geographica Pannonica, 23(3), 162-172. DOI: 10.5937/gp23-22853

Arsenović, P., Tošić, I., & Unkašević, M. (2015). Trends in combined climate indices in Serbia from 1961 to 2010. Meteorology and Atmospheric Physics, 127(4), 489-498. https://doi.org/10.1007/s00703-015-0380-6

Basarin, B., Lukić, T., & Matzarakis, A. (2016). Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia. International Journal of Biometeorology, 60(1), 139-150. https://doi.org/10.1007/s00484-015-1012-z

Belkin, M. (2009). Rapid warming of large marine ecosystems. Progress in Oceanography, 81(1-4), 207–213. https://doi.org/10.1016/j.pocean.2009.04.011

Brosy, C., Zaninovic, K., & Matzarakis, A. (2014). Quantification of climate tourism potential of Croatia based on measured data and regional modeling. International Journal of Biometeorology, 58(6), 1369-1381. https://doi.org/10.1007/s00484-013-0738-8

Bucchignani, E., Mercogliano, P., Panitz, H. J., & Montesarchio, M. (2018). Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions. Advances in Climate Change Research, 9(1), 66–80. https://doi.org/10.1016/j.accre.2018.01.004

Burić, D., Dragojlović, J., Penjišević-Sočanac, I., Luković, J., & Doderović, M. (2019). Relationship Between Atmospheric Circulation and Temperature Extremes in Montenegro in the Period 1951–2010. In: Leal Filho W., Trbic G., Filipovic D. (Eds), Climate Change Adaptation in Eastern Europe, Climate Change Management, 29-42. Springer, Cham. https://doi.org/10.1007/978-3-030-03383-5_3

Burić, B. D., Dragojlović, J. M., Milenković, M. Đ., Popović, Lj. Z., & Doderović, M.M. (2018). Influence of variability of the East Atlantic Oscillation on the air temperature in Montenegro. Thermal Science, 22(1 Part B), 759-766. http://www.doiserbia.nb.rs/img/doi/0354-9836/2018/0354-98361700211B.pdf

Burić, D., Luković, J., Bajat, B., Kilibarda, M., & Živković, N. (2015). Recent trends in daily rainfall extremes over Montenegro (1951–2010). Natural Hazards and Earth System Sciences, 15(9), 2069-2077, doi:10.5194/nhess-15-2069-2015, 2015. ISSN 1561-8633.

Burić, D., Ducić, V., & Mihajlović, J. (2013). The climate of Montenegro: Modificators and types - part two. Bulletin of the Serbian Geographical Society, 93(4), 83-102. DOI:10.2298/GSGD1304083B. ISSN: 0350-3593.

Burić, D., Ducić, V., & Luković, J. (2011). Kolebanje klime u Crnoj Gori u drugoj polovini XX i početkom XXI vijeka. Crnogorska akademija nauka i umjetnosti, Podgorica, str. 270 [Climate variabillity in Montenegro in second half of XX and the beginning of the XXI century. Montenegrin Academy of Science and Art, Podgorica, pp 270].

Criado-Aldeanueva, F., Del Río, J., & García-Lafuente, J. (2008). Steric and mass-induced Mediterranean sea level trends from 14 years of altimetry data. Global and Planetary Change, 60(3–4), 563–575. https://doi.org/10.1016/j.gloplacha.2007.07.003

Dai, A., (2006). Recent climatology, variability, and trends in global surface humidity. Journal of Climate, 19, 3589–3606. https://doi.org/10.1175/JCLI3816.1.

Del Rio, S., Cano-Ortiz, A., Herrero, L., & Penas, A. P. (2012). Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theoretical and Applied Climatology, 109, 605–626. https://doi.org/10.1007/s00704-012-0593-2.

Doderovic, M. M., & Buric, B. D. (2015). Atlantic Multi-decadal Oscillation and changes of summer air temperature in Montenegro. Thermal Science. 19(2), 405-414. doi:10.2298/TSCI150430115D

Ducić, V., Luković, J., Burić, D., Stanojević, G., & Mustafić, S. (2012). Precipitation extremes in the wettest Mediterranean region (Krivošije) and associated atmospheric circulation types. Nat. Hazards Earth Syst. Sci., 12(3), 687-697. doi:10.5194/nhess-12-687-2012. ISSN 1561-8633

Giorgi, F. (2006). Climate change hot‐spots. Geophysical Research Letters, 33(8), L08707 (pp 4). https://doi.org/10.1029/2006GL025734

Hanrahan, J., Maynard, A., Murphy, S.Z., Yercher, C., & Fitypatrick, A. (2017). Examining the Climatology of Shortwave Radiation in the Northeastern United States. Journal of Applied Meteorology and Climatology, 56(10), 2869-2881. DOI: 10.1175/JAMC-D-16-0420.1

Hochman, A., Harpaz, T., Saaroni, H., & Alpert, P. (2018a). Synoptic classification in 21st century CMIP5 predictions over the Eastern Mediterranean with focus on cyclones. International Journal of Climatology, 38(3), 1476-1483. https://doi.org/10.1002/joc.5260

Hochman, A., Harpaz, T., Saaroni H., & Alpert, P. (2018b). The seasons’ length in 21st century CMIP5 projections over the eastern Mediterranean. International Journal of Climatology, 38(6): 2627-2639. https://doi.org/10.1002/joc.5448

Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., & Pegion, P. (2012). On the increased frequency of Mediterranean drought. Journal of Climate, 25, 2146–2161. DOI: 10.1175/JCLI-D-11-00296.1

Intergovernmental Panel on Climate Change - IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Kalimeris, A., & Founda, D. (2018). Inter-annual variability modes of the Athens total cloud cover. International Journal of Climatol, 38(13), 4667-4686. DOI: 10.1002/joc.5687

Kostopoulou, E., Giannakopoulos, C., Krapsiti, D., & Karali, A. (2017). Temporal and Spatial Trends of the Standardized Precipitation Index (SPI) in Greece Using Observations and Output from Regional Climate Models. In: Karacostas T., Bais A., Nastos P. (eds), Perspectives on Atmospheric Sciences. Springer Atmospheric Sciences, 475-481. Springer, Cham. https://doi.org/10.1007/978-3-319-35095-0_68

Kotsias, G. & Lolis, C. J. (2018). A study on the total cloud cover variability over the Mediterranean region during the period 1979–2014 with the use of the ERA-Interim database. Theoretical and Applied Climatology, 134(1-2), 325–336. https://doi.org/10.1007/s00704-017-2276-5

Kutiel, H., Lukovic, J. & Buric, D. (2015). Spatial and temporal variability of rain-spells' characteristics in Serbia and Montenegro. International Journal of Climatology, 35(7), 1611-1624. DOI: 10.1002/joc.4080

Lelieveld, J., Proestos, Y., Hadjinicolaou, P., Tanarhte, M., Tyrlis, E., & G. (2016). Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change, 137(1-2), 245–260. https://doi.org/10.1007/s10584-016-1665-6

Lopez-Bustins, J. A, Pascual, D., Pla, E., & Retana, J. (2013). Future variability of droughts in three Mediterranean catchments. Natural Hazards, 69, 1405–1421. doi: 10.1007/s11069-013-0754-3

Mariotti, A. (2010). Recent changes in the Mediterranean water cycle: A pathway toward long-term regional hydroclimatic change? Journal of Climate, 23(6), 1513–1525. https://doi.org/10.1175/2009JCLI3251.1

Mondal, A., Kundu, S., & Mukhopadhyay, A. (2012). Rainfall trend analysis by Mann-Kendall test: A case study of norh-eastern part of cuttack distrct, Orissa. International Journal of Geology, Earth and Environmental Sciences, 2(1), 70-78. https://www.researchgate.net/publication/268438767.

Mostafa, A. N., Wheida, A., El Nazer, M., Adel, M., El Leithy, L., Siour, G., Coman, A., Borbon, A., Magdy, A. W., Omar, M., Saad-Hussein, A., & Alfaro, S. C. (2019). Past (1950–2017) and future (-2100) temperature and precipitation trends in Egypt. Weather and Climate Extremes, 26, 100225 (12 pp). https://doi.org/10.1016/j.wace.2019.100225

Mihajlović, J., Ducić, V., & Burić, D. (2016). Tornadic Waterspout event in Split (Croatija) - analysis of meteorological environment. Journal of the Geographical Institute "Jovan Cvijic" SASA, 66(2), 185-202. DOI:10.2298/IJGI1602185M

Milošević, D. D., Savić, S. M., Pantelić, M., Stankov, U., Žiberna, I., Dolinaj, D., & Leščešen, I. (2016). Variability of seasonal and annual precipitation in Slovenia and its correlation with large-scale atmospheric circulation. Open geosciences, 8(1), 593-605. https://doi.org/10.1515/geo-2016-0041

Milošević, D., Savić, M., Stankov, U., Žiberna, I., Pantelić, M., Dolinaj, D., & Leščešen, I. (2017). Maximum temperatures over Slovenia and their relationship with atmospheric circulation patterns. Geografie, 122(1), 1–20. https://www.researchgate.net/publication/304989253

Mishra, A. K. (2019). Investigating changes in cloud cover using the long-term record of precipitation extremes. Meteorological Applications, 26(1), 108-116. https://doi.org/10.1002/met.1745

Mishra, A. K. (2018). Remote sensing of convective clouds using multi-spectral observations and examining their variability over India. Remote Sensing Applications: Society and Environment, 12, 23-29. https://doi.org/10.1016/j.rsase.2018.08.002

Norrant, C., & Douguédroit, A. (2006). Monthly and daily precipitation trends in the Mediterranean (1950–2000). Theoretical and Applied Climatollogy, 83(1-4),89–106. https://doi.org/10.1007/s00704-005-0163-y

Ogrin, M., Nikolić, G., Ogrin, D., & Trobec, T. (2018). An investigation of winter minimum temperatures in the mountains of Montenegro: A case study from the karst depression of Valoviti Do and selected mountain stations of northern Montenegro. Geographica Pannonica, 22(4), 241-252. DOI: 10.5937/gp22-18017

Pastor, F., Valiente, J. A., & Estrela, M. J. (2015). Sea surface temperature and torrential rains in the Valencia region: Modelling the role of recharge areas. Natural Hazards and Earth System Sciences, 15(7), 1677–1693. https://doi.org/10.5194/nhess-15-1677-2015

Perevedentsev, Y. P., Shantalinskii, K. M., & Vazhnova, N. A. (2014). Spatiotemporal variations of major parameters of temperature and humidity regime in the Volga Federal District. Russian Meteorology and Hydrology, 39(4), 228-239. https://doi.org/10.3103/S1068373914040037

Putniković, S., & Tošić, I. (2018). Relationship between atmospheric circulation weather types and seasonal precipitation in Serbia. Meteorology and Atmospheric Physics, 130(4), 393-403. https://doi.org/10.1007/s00703-017-0524-y

Seager, R., Osborn, T. J., Kushnir, Y., Simpson, I. R.,Nakamura, J., & Liu, H. (2019). Climate Variability and Change of Mediterranean-Type Climates. Journal Of Climate, 32(10), 2887–2915. https://doi.org/10.1175/JCLI-D-18-0472.1

Shaltout, M., & Omstedt, A. (2014). Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia, 56(3), 411–443.https://doi.org/10.5697/oc.56-3.411

Skliris, N., Sofianos, S., Gkanasos, A. , Mantziafou, A., Vervatis, V., Axaopoulos, P., & Lascaratos, A. (2012). Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dynamics, 62(1), 13-30. https://doi.org/10.1007/s10236-011-0493-5

Song, Y., Liu, Y., & Ding, Y. (2012). A study of surface humidity changes in China during the recent 50 years. Acta Meteorologica Sinica, 26(5), 541–553. DOI: 10.1007/s13351-012-0501-9

Szabó, S., Szopos, N. M., Bertalan-Balázs, B., László, E., Milošević, D. D., Conoscenti, C., & Lázár, I. (2019). Geospatial analysis of drought tendencies in the Carpathians as reflected in a 50-year time series. Hungarian Geographical Bulletin, 68(3), 269-282. https://doi.org/10.15201/hungeobull.68.3.5

Szentimrey, T. (2003). Multiple analysis of series for homogenization (MASH); Verification procedure for homogenized time series. In Fourth seminar for homogenization and quality control in climatological databases. Budapest, Hungary, WMO-TD (No. 1236, pp. 193-201).

Šumenjak, K., & Šuster, V. (2011). Parametrični in neparametrični pristopi za odkrivanje trenda v časovnih vrstah [Parametric and non-parametric approaches for trend detection in time series]. Acta agriculturae Slovenica, 97(3): 305-312. COBISSID 3230764

Tang, Q., & Leng, G. (2013). Changes in Cloud Cover, Precipitation, and Summer Temperature in North America from 1982 to 2009. Journal of Climate, 26, 1733-1744. https://doi.org/10.1175/JCLI-D-12-00225.1

Tosic, I., & Unkasevic, M. (2014). Analysis of wet and dry periods in Serbia. International Journal of Climatology, 34(5), 1357–1368. https://doi.org/10.1002/joc.3757

Trbić, G., Popov, T., & Gnjato, S. (2017). Analysis of air temperature trends in Bosnia and Herzegovina. Geographica Pannonica, 21(2), 68-84. DOI: 10.18421/GP21.02-01

Turuncoglu, U. U. (2015). Identifying the sensitivity of precipitation of Anatolian peninsula to Mediterranean and Black Sea surface temperature. Climate Dynamics, 44(7-8), 1993-2015. https://doi.org/10.1007/s00382-014-2346-7

Published
2020/01/11
Section
Original Research