New clothing resistance scheme for estimating outdoor environmental thermal load

  • Ferenc Ács Eötvös Loránd University, Department of Meteorology
  • Erzsébet Kristóf Eötvös Loránd University, Faculty of Science, Department of Meteorology, Pázmány Péter sétány 1/A., Budapest, Hungary and Eötvös Loránd University, Faculty of Science, Excellence Center, Brunszvik utca 2, Martonvásár, Hungary
  • Annamária Zsákai Eötvös Loránd University, Faculty of Science, Department of Human Anthropology, Pázmány Péter sétány 1/C., Budapest, Hungary

Abstract


A new clothing resistance model for estimating outdoor thermal load is proposed and its behavior is analyzed in different weather conditions. It is based on clothed human body energy balance considerations; the human treated is a walking human in outdoor conditions. Weather and human data are taken from the internet site of the Hungarian Meteorological Service and from a Hungarian human dataset, respectively.  Environmental thermal load is characterized in terms of clothing resistance rcl and operative temperature. The model’s main strength is that it simulates metabolic rate M as simply as possible. rcl deviations caused by personal variations of M are the largest in extreme cold and warm conditions, in the comfort zone this effect is non-essential. rcl deviations caused by wind speed variations can be especially large in large heat excess cases. Further model tests are needed for more extreme conditions.

 

References

Ács, F., Breuer, H., & Skarbit, N. (2015). Climate of Hungary in the twentieth century according to Feddema. Theoretical and applied climatology, 119, 161-169.

Auliciems, A., & de Freitas, C.R. (1976). Cold stress in Canada: A human climatic classification. International Journal of Biometeorology, 20(4), 287-294. doi:10.1007/bf01553585

Auliciems, A., & Kalma, J.D. (1979). A Climatic Classification of Human Thermal Stress in Australia. Journal of Applied Meteorology, 18(5), 616-626. doi:10.1175/1520-0450(1979)018<0616:accoht>2.0.co;2

Błażejczyk, K., & Krawczyk, B. (1994). Bioclimatic Research of the Human Heat Balance. Polish Academy of Sciences - Institute of Geography and Spatial Organization. No. 28, 66 pp.

Brownrigg, R. (2018). mapdata: Extra Map Databases. R package version 2.3.0. Original S code by R.A. Becker, A.R. Wilks; URL: https://CRAN.R-project.org/package=mapdata.

Brownrigg, R., Minka, T.P., & Deckmyn, A. (2018). maps: Draw Geographical Maps. R package version 3.3.0. Original S code by R.A. Becker, A.R. Wilks; URL: https://CRAN.R-project.org/package=maps.

Brunt, D. (1932). Notes on radiation in the atmosphere. I. Quarterly Journal of the Royal Meteorological Society, 58(247), 389-420. doi:10.1002/qj.49705824704

Burton, A.C., & Edholm, O.G. (1955). Man in a Cold Environment. London: Edward Arnold Ltd.

Campbell, G.S., & Norman, J.M. (1998). An Introduction to Environmental Biophysics. New York: Springer. doi:10.1007/978-1-4612-1626-1

de Freitas, C.R. (1979). Human climates of Northern China. Atmospheric Environment (1967), 13(1), 71-77. doi:10.1016/0004-6981(79)90246-4

Dubois, D., & Dubois, E.F. (1915). The Measurement of the Surface Area of Man. Archives of Internal Medicine, XV(5_2), doi:10.1001/archinte.1915.00070240077005

Frankenfield, D., Roth-Yousey, L., & Compher, C. (2005). Comparison of Predictive Equations for Resting Metabolic Rate in Healthy Nonobese and Obese Adults: A Systematic Review. Journal of the American Dietetic Association, 105(5), 775-789. doi:10.1016/j.jada.2005.02.005

Herrington, L.P., Winslow, C.-.A., & Gagge, A.P. (1937). The relative influence of radiation and convection upon vasomotor temperature regulation. American Journal of Physiology-Legacy Content, 120(1), 133-143. doi:10.1152/ajplegacy.1937.120.1.133

Katić, K., Li, R., & Zeiler, W. (2016). Thermophysiological models and their applications: A review. Building and Environment, 106, 286-300. doi:10.1016/j.buildenv.2016.06.031

Konzelmann, T., van de Wal, R.S., Greuell, W., Bintanja, R., Henneken, E.A., & Abe-Ouchi, A. (1994). Parameterization of global and longwave incoming radiation for the Greenland Ice Sheet. Global and Planetary Change, 9(1-2), 143-164. doi:10.1016/0921-8181(94)90013-2

Lees, J.M. (2018). GEOmap: Topographic and Geologic Mapping. R package version 2.4-4. URL https://CRAN.R-project.org/package=GEOmap.

Lees, J.M. (2012). geomapdata: Data for topographic and Geologic Mapping. R package version 1.0-4; URL: https://CRAN.R-project.org/package=geomapdata.

Nychka, D., Furrer, R., Paige, J., & Sain, S. (2017). fields: Tools for spatial data. R package version 9.9; URL: https://cran.r-project.org/web/packages/fields/index.html. DOI: 10.5065/D6W957CT.

Matzarakis, A. (2007). Climate, thermal comfort and tourism. In B. Amelung, K. Blazeyczyk, & A. Matzarakis (Eds.), Climate Change and Tourism: Assessment and Coping Strategies. Maastricht -Warsaw -Freiburg: Polish Academy of Sciences - Institute of Geography and Spatial Organization. pp 140-154; ISBN: 978-00-023716-4.

Mifflin, M.D., St, J.S.T., Hill, L.A., Scott, B.J., Daugherty, S.A., & Koh, Y.O. (1990). A new predictive equation for resting energy expenditure in healthy individuals. The American Journal of Clinical Nutrition, 51(2), 241-247. doi:10.1093/ajcn/51.2.241

Mihailović, D.T., & Ács, F. (1985). Calculation of daily amounts of global radiation in Novi Sad. Időjárás, 257-261; 89; in Hungarian.

Potchter, O., Cohen, P., Lin, T., & Matzarakis, A. (2018). Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of The Total Environment, 631-632, 390-406. doi:10.1016/j.scitotenv.2018.02.276

R Core Team. (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. URL: http://www.R-project.org/.

Robaa, S.M., & Hasanean, H.M. (2007). Human climates of Egypt. International Journal of Climatology, 27(6), 781-792. doi:10.1002/joc.1434

Zsákai, A., Mascie-Taylor, N., & Bodzsár, É.B. (2015). Relationship between some indicators of reproductive history, body fatness and the menopausal transition in Hungarian women. Journal of physiological anthropology, 34(1), 35-42. DOI: 10.1186/s40101-015-0076-0.

Yan, Y.Y., & Oliver, J.E. (1996). The Clo: A Utilitarian Unit to Measure Weather/Climate Comfort. International Journal of Climatology, 16(9), 1045-1056. doi:10.1002/(sici)1097-0088(199609)16:9<1045::aid-joc73>3.3.co;2-f

Yan, Y.Y. (2005). Human Thermal Climates in China. Physical Geography, 26(3), 163-176. doi:10.2747/0272-3646.26.3.163

Weyand, P.G., Smith, B.R., Puyau, M.R., & Butte, N.F. (2010). The mass-specific energy cost of human walking is set by stature. Journal of Experimental Biology, 213(23), 3972-3979. doi:10.1242/jeb.048199

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer - Verlag. ISBN 978-3-319-24277-4; URL: http://ggplot2.org.

Published
2020/01/11
Section
Original Research