Analysis of the urban heat island intensity based on air temperature measurements in a renovated part of Budapest (Hungary)

  • Csenge Dian Eötvös Loránd University
  • Rita Pongrácz Eötvös Loránd University
  • Dóra Incze Eötvös Loránd University
  • Judit Bartholy Eötvös Loránd University
  • Attila Talamon Centre for Energy Research
Keywords: spatial structure of UHI, daily cycle of UHI intensity, in situ measurements, green area, summer, autumn,

Abstract


The ratio of buildings, streets, and other artificially covered areas are increasing in cities. Ferencváros is an inner district of Budapest, the capital city of Hungary. For the local government of the district it is an important goal in the framework of the urban development planning to increase the proportion of vegetation since green areas have a mitigating effect for the urban heat island (UHI) intensity. We carried out an in situ measurement program for air temperature and relative humidity with 24 measuring points in Ferencváros, and also completed a green area survey in the renovated part of the district. The main aim of this paper is to analyse the daily cycle and the spatial structure of the UHI intensity based on air temperature.


Author Biographies

Csenge Dian, Eötvös Loránd University
Department of Meteorology, PhD student
Rita Pongrácz, Eötvös Loránd University
Department of Meteorology, assistant professor
Dóra Incze, Eötvös Loránd University
Department of Meteorology, MSc student
Judit Bartholy, Eötvös Loránd University
Department of Meteorology, professor
Attila Talamon, Centre for Energy Research
researcher

References

Akaike, H. (1974). A new look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716–723. doi: 10.1109/TAC.1974.1100705

Bajšanski, I., Milošević, D., & Savić, S. (2015). Evaluation and improvement of outdoor thermal comfort in urban areas on extreme temperature days: Applications of automatic algorithms. Building and Environment, 94, 632-643. doi:10.1016/j.buildenv.2015.10.019

Beranová, R. & Huth, R. (2005). Long-term changes in the heat island of Prague under different synoptic conditions. Theoretical and Applied Climatology, 82, 113–118. doi: 10.1007/s00704-004-0115-y

Bokwa, A., Dobrovolný, P., Gál, T., Geletič, J., Gulyás, Á., Hajto, M.J., Holec, J., Hollósi, B., KielarI, R., Lehnert, M., Skarbit, N., Šťastný, P., Švec, M., Unger, J., Walawender, J.P. & Žuvela-Aloise, M. (2018). Urban Climate in Central European Cities and Global climate change. Acta climatologica, 51-52,7-35. doi: 10.14232/acta.clim.2018.52.1

Budapest Capital Local Government (2011). Urban development strategy of Budapest. Budapest, 287 p.

Cheval, S. & Dumitrescu, A. (2015). The summer surface urban heat island of Bucharest (Romania) retrieved from MODIS images. Theoretical and Applied Climatology, 121, 631–640. doi: 10.1007/s00704-014-1250-8

Cohen P., Potchter O. & Matzarakis A., 2012. Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Building and Environment 51, 285₋295. doi: 10.1016/j.buildenv.2011.11.020

Croitoru, A.E., Holobaca, I.H., Lazar, C., Moldovan, F., & Imbroane, A. (2012). Air temperature trend and the impact on winter wheat phenology in Romania. Climatic Change, 111, 393–410. doi: 10.1007/s10584-011-0133-6

Dobrovolný, P. (2013). The surface urban heat island in the city of Brno (Czech Republic) derived from land surface temperatures and selected reasons for its spatial variability. Theoretical and Applied Climatology, 112, 89–98. doi: 10.1007/s00704-012-0717-8

Electronic Public Utility System: https://www.e-epites.hu/e-kozmu

Gál T., Skarbit N., & Unger J. (2016). Urban heat island patterns and their dynamics based on an urban climate measurement network. Hungarian Geographical Bulletin, 65(2), 105₋116. doi: 10.15201/hungeobull.65.2.2

Geletič, J., Lehnert, M., Savić, S. & Milošević, D. (2019). Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Building and Environment, 156, 21-32. doi: 10.1016/j.buildenv.2019.04.011

Google Earth: https://earth.google.com/

Herbel, I., Croitoru, A. E., Rus, A. V., Roşca, C. F., Harpa, G. V., Ciupertea, A. F., & Rus, I. (2017). The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania. Theoretical and Applied Climatology, 133, 681-695. doi: 10.1007/s00704-017-2196-4

Hungarian Central Statistical Office, Hungary 2017: https://www.ksh.hu/; http://www.ksh.hu/docs/hun/xftp/terstat/2017/03/06_ts570304.pdf.

Klysik K. & Fortuniak K. (1999). Temporal and spatial characteristics of the urban heat island of Lódz, Poland. Atmospheric Environment, 33, 3885₋3895. doi: 10.1016/S1352-2310(99)00131-4

Landsberg, H. E. (1981). The Urban Climate. Academic Press, pp. 275. doi: 10.1002/qj.49710845719

Leconte, F., Bouyer, J., Claverie, R., & Pétrissans, M. (2015). Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements, Building and Environment, 83, 39₋49. doi: 10.1016/j.buildenv.2014.05.005

Lehnert, M., Geletič, J., Dobrovolný, P., & Jurek, M. (2018a). Temperature differences among local climate zones established by mobile measurements in two central European cities. Climate Research, 75(1), 53-64. doi: 10.3354/cr01508

Lehnert, M., Kubeček, J., Geletič, J., Jurek, M., & Frajer, J. (2018b). Identifying hot and cool spots in the city centre based on bicycle measurements: the case of Olomouc, Czech Republic. Geographica Pannonica, 22(4), 230-240 doi: 10.5937/gp22-19750

Lelovics, E., Unger, J., Savić, S., Gál, T., Milošević, D., Gulyás, Á., Marković, V., Arsenović, D., & Gál, CV. (2016). Intra-urban temperature observations in two Central European cities: a summer study. Idojárás, 120, 3, 283-300.

Local Government of Ferencváros (2010). Rehabilitation of Budapest Ferencváros. Budapest. 80.

Marković, V., Savić, S., Arsenović, D., Stankov, U., & Dolinaj, D. (2013). Quantification of artificial surfaces impact on urban heat island of Novi Sad (Vojvodina, Serbia). Geographica Pannonica, 17(3), 69-73.

Milošević, D., Bajšanski, I., & Savić, S. (2017). Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban Forestry and Urban Greening, 23, 113-124. doi: 10.1016/j.ufug.2017.03.011

Oke, T.R. (1973). City size and the urban heat island. Atmospheric Environment, 7, 769₋779. http://www.theurbanclimatologist.com/uploads/4/4/2/5/44250401/post6oke1973uhiscaling.pdf

Oke, T. R. (1981). Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. Journal of Climatology, 1, 237₋254. doi: 10.1002/joc.3370010304

Oke, T.R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1₋24. doi: 10.1002/qj.49710845502

Oke, T. R. (1995). The heat island of the urban boundary layer: characteristics, causes and effects. In: Wind Climate in Cities. Springer Science + Business Media, Dordrecht. 81–107.

Pongrácz R., Bartholy J., & Dezső Zs. (2010). Application of remotely sensed thermal information to urban climatology of Central European cities. Physics and Chemistry of the Earth, 35, 95₋99. doi: 10.1016/j.pce.2010.03.004

Pongrácz, R., Bartholy, J., Dezső, Zs., & Dian, Cs. (2016). Analysis of the air temperature and relative humidity measurements in the Budapest Ferencváros District. Hungarian Geographical Bulletin, 65(2), 93₋103. doi: 10.15201/hungeobull.65.2.1

Savić, S., Unger, J., Gál, T., Milošević, D., & Popov, Z. (2013). Urban heat island research of Novi Sad (Serbia): A review. Geographica Pannonica, 17(1), 32-36. ISSN 0354-8724 (hard copy) | ISSN 1820-7138 (online)

Schwarz, N., Lautenbach, S., & Seppelt, S. (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperature. Remote Sensing of Environment, 115, 3175–3186. doi: 10.1016/j.rse.2011.07.003

Šećerov, I., Savić, S., Milošević, D., Marković, V., & Bajšanski, I., (2015). Development of an Automated Urban Climate Monitoring System in Novi Sad (Serbia). Geographica Pannonica, 19(4), 174-183. doi: 10.5937/GeoPan1504174S

Šećerov, I.B., Savić, S.M., Milošević, D.D., Arsenović, D.M., Dolinaj, D.M., & Popov, S.B. (2019). Progressing urban climate research using a high-density monitoring network system. Environmental Monitoring and Assessment, 191, 89. doi: 10.1007/s10661-019-7210-0

Synop riports: http://www.ogimet.com/synops.phtml.en

Takács, Á., Kiss, M., Gulyás, Á., Tanács, E., & Kántor, N. (2016). Solar permeability of different tree species in Szeged, Hungary. Geographica Pannonica, 20(1), 32-41 doi: 10.5937/GeoPan1601032T

Testo 635 - https://www.testo.com/en/testo-635-1/p/0560-6351

Tran, H., Uchihama, D., Ochi, S., & Yasuoka, Y. (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation, 8, 34₋48. doi: 10.1016/j.jag.2005.05.003

Tsin, P.K., Knudby, A., Krayenhoff, E.S., Ho, H.C., Brauer, M., & Henderson, S.B. (2016). Microscale mobile monitoring of urban air temperature. Urban Climate, 18, 58-72. doi: 10.1016/j.uclim.2016.10.001

United Nations (2015). World Urbanization Prospects: The 2014 Revision, (ST/ESA/SER.A/366). U.N. Dept. of Economic and Social Affairs, Population Division, 517. https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf

Voogt J. A., & Oke T. R. (2003). Thermal remote sensing of urban climate. Remote Sensing of Environment, 86, 370₋384. doi: 10.1016/S0034-4257(03)00079-8

Yu C., & Hien W.N. (2006). Thermal benefits of city parks. Energy and Buildings, 38, 105₋20. doi: 10.1016/j.enbuild.2005.04.003

Published
2020/01/11
Section
Original Research