Analysis of surface temperature measurements over complex urban sites

  • Zsuzsanna Dezső Eötvös Loránd University
  • Rita Pongrácz Eötvös Loránd University
  • Judit Bartholy Eötvös Loránd University
Keywords: surface temperature measurements, concrete pavements, rubber paving, outdoor thermal comfort, Budapest,

Abstract


The aim of this study is to analyse the thermal properties of natural and artificial urban surfaces and the impact of surface colours and shading. Measuring campaigns were conducted in spring and summer (2018–2019) in the district XI of Budapest to determine the surface temperature of various urban materials. The results show that the coolest surfaces are natural covers (water, vegetation), while the hottest surfaces are concrete pavements, asphalt and rubber paving when exposed to direct solar radiation. Moreover, among concrete pavements, light coloured surfaces warm up 5-6 °C less on average compared to dark coloured surfaces. The use of rubber paving may be disadvantageous from the urban climatological point of view, as these surfaces become extremely hot under sunny conditions.


Author Biographies

Zsuzsanna Dezső, Eötvös Loránd University
Department of Meteorology
Rita Pongrácz, Eötvös Loránd University
Department of Meteorology
Judit Bartholy, Eötvös Loránd University
Department of Meteorology

References

Akbari, H., Matthews, H. D., & Seto, D. (2012). The long-term effect of increasing the albedo of urban areas. Environmental Research Letters, 7(2), 024004. DOI:10.1088/1748-9326/7/2/024004

Alchapar, N. L., Correa, E. N., & Cantón, M. A. (2014). Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones. Energy and Buildings, 69, 22-32. DOI:10.1016/j.enbuild.2013.10.012

Ben-Dor, E., & Saaroni, H. (1997). Airborne video thermal radiometry as a tool for monitoring microscale structures of the urban heat island. International Journal of Remote Sensing, 18(14), 3039-3053. DOI: 10.1080/014311697217198

Baniassadi, A., Sailor D.J., & Ban-Weiss, G.A. (2019). Potential energy and climate benefits of super-cool materials as a rooftop strategy. Urban Climate, 29, 100495, DOI: 10.1016/j.uclim.2019.100495.

Chang, F. H., Lin, T. C., Huang, C. I., Chao, H. R., Chang, T. Y., & Lu, C. S. (1999). Emission characteristics of VOCs from athletic tracks. Journal of hazardous materials, 70(1-2), 1-20. DOI: 10.1016/S0304-3894(99)00154-5

Cheval, S., & Dumitrescu, A. (2015). The summer surface urban heat island of Bucharest (Romania) retrieved from MODIS images. Theoretical and Applied Climatology, 121, 631–640. doi: 10.1007/s00704-014-1250-8

Dezső, Zs., Bartholy, J., & Pongrácz, R. (2005). Satellite-based analysis of the urban heat island effect. Időjárás/Quarterly Journal of the Hungarian Meteorological Service, 109(4), 217-232.

Doulos, L., Santamouris, M., & Livada, I. (2004). Passive cooling of outdoor urban spaces. The role of materials. Solar energy, 77(2), 231-249. DOI: 10.1016/j.solener.2004.04.005

Fiebrich, C.A., Martinez, J.E., Brotzge, J.A., & Basara, J.B. (2003). The Oklahoma Mesonet’s skin temperature network. Journal of Atmospheric and Oceanic Technology, 20(11): 1496–1504. DOI: 10.1175/1520-0426(2003)020<1496:TOMSTN>2.0.CO;2

Geletič, J., Lehnert, M., Savić, S. and Milošević, D. (2019). Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Building and Environment, 156, 21-32. doi: 10.1016/j.buildenv.2019.04.011

Higashiyama, H., Sano, M., Nakanishi, F., Takahashi, O., & Tsukuma, S. (2016). Field measurements of road surface temperature of several asphalt pavements with temperature rise reducing function. Case Studies in Construction Materials, 4, 73-80. DOI: 10.1016/j.cscm.2016.01.001

HMI (2019): Hungarian Ministry of Interior, https://nyilvantarto.hu/hu/statisztikak?stat=kozerdeku

Lo, C.P., & Quattrochi, D.A. (2003). Land-use and land-cover change, urban heat island phenomenon, and health implications: A remote sensing approach. Photogrammetric Engineering and Remote Sensing, 69, 1053–1063. DOI: 10.14358/PERS.69.9.1053

Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study Urban Heat Island – Abilities and limitations. Building and Environment, 45, 2192–220. DOI: 10.1016/j.buildenv.2010.04.001

Muller, C.L., Chapman, L., Grimmond, C.S.B., Young, D.T., & Cai, X-M. (2013). Sensors and the city: a review of urban meteorological networks. Int. J. Climatol. 33, 1585–1600. DOI: 10.1002/joc.3678

Nadeau, D.F., Brutsaert, W., Parlange, M.B., Bou-Zeid, E., Barrenetxea, G., Couach, O., Boldi, M.-O., Selker, J.S., & Vetterli, M. (2009). Estimation of urban sensible heat flux using dense wireless network of observations. Environmental Fluid Mechanics, 9, 635–653. DOI: 10.1007/s10652-009-9150-7

Nevat, I., Ruefenacht, L.A., & Aydt, H. (2020). Recommendation system for climate informed urban design under model uncertainty. Urban Climate, 31, 100524, DOI: 10.1016/j.uclim.2019.100524

Nichol, J. (2005). Remote sensing of urban heat islands by day and night. Photogrammetric Engineering and Remote Sensing, 71, 613–621. DOI:

Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment, 7(8), 769-779. DOI: 10.1016/0004-6981(73)90140-6

Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24. DOI: 10.1002/qj.49710845502

Pongracz, R., Bartholy, J., & Dezso, Z. (2006). Remotely sensed thermal information applied to urban climate analysis. Advances in Space Research, 37(12), 2191-2196. DOI: 10.1016/j.asr.2005.06.069

Price, J.C. (1979). Assesment of the heat island effect through the use of satellite data. Monthly Weather Review, 107, 1554-1557. DOI: 10.1175/1520-0493(1979)107<1554:AOTUHI>2.0.CO;2

Qin, Y. (2015). A review on the development of cool pavements to mitigate urban heat island effect. Renewable and sustainable energy reviews, 52, 445-459. DOI: 10.1016/j.rser.2015.07.177

Rasul, A., Balzter, H., Smith, C., Remedios, J., Adamu, B., Sobrino, J.A., Srivanit, M., & Weng, Q. (2017). A Review on Remote Sensing of Urban Heat and Cool Islands. Land, 6, 38. DOI: 10.3390/land6020038

Roth, M., Oke, T.R., & Emery, W.J. (1989). Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. International Journal of Remote Sensing, 10, 1699-1720, DOI: 10.1080/01431168908904002

Salata, F., Golasi, I., de Lieto Vollaro, A., & de Lieto Vollaro, R. (2015). How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study. Energy and Buildings, 99, 32-49. DOI: 10.1016/j.enbuild.2015.04.010

Šećerov, I.B., Savić, S.M., Milošević, D.D., Arsenović, D.M., Dolinaj, D.M., & Popov, S.B. (2019). Progressing urban climate research using a high-density monitoring network system. Environmental Monitoring and Assessment, 191, 89-. https://doi.org/10.1007/s10661-019-7210-0

Shahidan, M. F., Jones, P. J., Gwilliam, J., & Salleh, E. (2012). An evaluation of outdoor and building environment cooling achieved through combination modification of trees with ground materials. Building and Environment, 58, 245-257. DOI: 10.1016/j.buildenv.2012.07.012

Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900. DOI: 10.1175/BAMS-D-11-00019.1

Stoll, M.J., & Brazel, A.J. (1992). Surface-air temperature relationships in the urban environment of Phoenix, Arizona. Physical Geography, 13(2),160–179. DOI: 10.1080/02723646.1992.10642451

Sundborg, Å. (1950). Local climatological studies of the temperature conditions in an urban area. Tellus, 2(3), 222-232. DOI: 10.3402/tellusa.v2i3.8544

Unger, J., Bottyán, Z., Sümeghy, Z., & Gulyás, Á. (2000). Urban heat island development affected by urban surface factors. Időjárás/Quarterly Journal of the Hungarian Meteorological Service, 104, 253-268.

Vanos, J. K., Middel, A., McKercher, G. R., Kuras, E. R., & Ruddell, B. L. (2016). Hot playgrounds and children's health: a multiscale analysis of surface temperatures in Arizona, USA. Landscape and Urban Planning, 146, 29-42. DOI: 10.1016/j.landurbplan.2015.10.007

Wang, Y.-C., Hu, B.K.H., Myint, S.W., Feng, C.-C., Chow, W.T.L., & Passy, P.F. (2018). Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Science of The Total Environment, 643, 738-750. DOI: 10.1016/j.scitotenv.2018.06.209

Yavaşli, D.D. (2017). Spatio-Temporal Trends of Urban Heat Island and Surface Temperature in Izmir, Turkey. American Journal of Remote Sensin. 5, 24-29. DOI: 10.11648/j.ajrs.20170503.11

Zen, I.S., Al-Amin, A.Q., & Doberstein, B. (2019). Mainstreaming climate adaptation and mitigation policy: Towards multi-level climate governance in Melaka, Malaysia. Urban Climate, 30, 100501, DOI: 10.1016/j.uclim.2019.100501.

Published
2020/01/11
Section
Original Research