Climate sensitivity to land use changes over the city of Brussels

  • Gwenn Cugnon Royal Meteorological Institute of Belgium
  • Steven Caluwaerts Ghent University
  • François Duchêne Royal Meteorological Institute of Belgium
  • Rafiq Hamdi Royal Meteorological Institute of Belgium
  • Piet Termonia Royal Meteorological Institute of Belgium
  • Sara Top Ghent University
  • Thomas Vergauwen Ghent University
  • Bert Van Schaeybroeck Royal Meteorological Institute of Belgium
Keywords: climate change, adaptation, land use, urban climatology, scenarios,

Abstract


Prompted with the ongoing and projected climate change, a wide range of cities have committed, not only to mitigate greenhouse gas emissions but also to implement different climate change adaptation measures. These measures serve to ensure the wellbeing of the urban population. In practice, however, the planning of realistic adaptation measures is a complex process. Prior to starting such endeavor, it may therefore be useful to explore the maximum potential benefit that can be gained through adaptation measures. In this work, simple, extreme yet realistic adaptation measures are proposed in terms of changes in albedo and vegetation fraction. The impact of these land-use scenarios is explored by use of the land surface model SURFEX on the summer climate in terms of heat waves and the urban heat island for the city of Brussels. This is done for different periods in the future using the greenhouse gas scenario RCP8.5.



References

Caluwaerts, S., Hamdi, R., Top, S., Lauwaet, D., Berckmans, J., Degrauwe, D., Dejonghe, H., De Ridder, K., De Troch, R., Duchêne, F., & Maiheu, B. (2020). The urban climate of Ghent, Belgium: A case study combining a high-accuracy monitoring network with numerical simulations. Urban Climate, 31, 100565. doi: 10.1016/j.uclim.2019.100565

De Munck, C., Lemonsu, A., Masson, V., Le Bras, J., & Bonhomme, M. (2018). Evaluating the impacts of greening scenarios on thermal comfort and energy and water consumptions for adapting Paris city to climate change. Urban Climate, 23, 260-286. doi: 10.1016/j.uclim.2017.01.003

Di Napoli, C., Pappenberger, F., & Cloke, H. L. (2018). Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International journal of biometeorology, 62(7), 1155-1165. doi:10.1007/s00484-018-1518-2

EEA, F. (2016). Urban sprawl in Europe. Joint EEA-FOEN report.

Erell, E., Pearlmutter, D., Boneh, D., & Kutiel, P. B. (2014). Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Climate, 10, 367-386. doi: 10.1016/j.uclim.2013.10.005

Forzieri, G., Cescatti, A., e Silva, F. B., & Feyen, L. (2017). Increasing risk over time of weather-related hazards to the European population: a data-driven prognostic study. The Lancet Planetary Health, 1(5), e200-e208. doi: 10.1016/s2542-5196(17)30082-7

Giot, O., Termonia, P., Degrauwe, D., De Troch, R., Caluwaerts, S., Smet, G., Berckmans, J., Deckmyn, A., De Cruz, L., De Meutter, P., Duerinckx, A., Gerard, L., Hamdi, R., Van den Bergh, J., Van Ginderachter, M., & Van Schaeybroeck, B. (2015). Validation of the ALARO-0 model within the EURO-CORDEX framework. Geoscientific Model Development Discussions, 8(10), 8387-8409. doi: 10.5194/gmdd-8-8387-2015

Guerreiro, S. B., Dawson, R. J., Kilsby, C., Lewis, E., & Ford, A. (2018). Future heat-waves, droughts and floods in 571 European cities. Environmental Research Letters, 13(3), 034009. doi: 10.1088/1748-9326/aaaad3

Hamdi, R., Van de Vyver, H., De Troch, R., & Termonia, P. (2014). Assessment of three dynamical urban climate downscaling methods: Brussels's future urban heat island under an A1B emission scenario. International Journal of Climatology, 34(4), 978-999. doi: 10.1002/joc.3734

Hamdi, R., Giot, O., De Troch, R., Deckmyn, A., & Termonia, P. (2015). Future climate of Brussels and Paris for the 2050s under the A1B scenario. Urban climate, 12, 160-182. doi: 10.1016/j.uclim.2015.03.003

Hamdi, R., Duchêne, F., Berckmans, J., Delcloo, A., Vanpoucke, C., & Termonia, P. (2016). Evolution of urban heat wave intensity for the Brussels Capital Region in the ARPEGE-Climat A1B scenario. Urban Climate, 17, 176-195. doi: 10.1016/j.uclim.2016.08.001.

Helsen, S., van Lipzig, N. P., Demuzere, M., Broucke, S. V., Caluwaerts, S., De Cruz, L., De Cruz, L., De Troch, R., Hamdi, R., Termonia, P., Van Schaeybroeck, B., & Wouters, H. (2019). Consistent scale-dependency of future increases in hourly extreme precipitation in two convection-permitting climate models. Climate Dynamics, 1-14. doi: 10.1007/s00382-019-05056-w

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., & Georgopoulou, E. (2014). EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional environmental change, 14(2), 563-578. doi: 10.1007/s10113-013-0499-2

Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S. P., Vautard, R., Donnelly, C., Koutroulis, A.G., Grillakis, M.G., Tsanis, I.K., Damm, A., & Sakalli, A. (2018). Climate impacts in Europe under+ 1.5 C global warming. Earth's Future, 6(2), 264-285. doi:

Lauwaet, D., De Ridder, K., Saeed, S., Brisson, E., Chatterjee, F., van Lipzig, N. P., Maiheu, B., & Hooyberghs, H. (2016). Assessing the current and future urban heat island of Brussels. Urban Climate, 15, 1-15. doi: 10.1016/j.uclim.2015.11.008

EEA, F. (2016). Urban sprawl in Europe. Joint EEA-FOEN report.

Martinez, G. S., Diaz, J., Hooyberghs, H., Lauwaet, D., De Ridder, K., Linares, C., Carmona, R., Ortiz, C., Kendrovski, V., Aerts, R., & Van Nieuwenhuyse, A. (2018). Heat and health in Antwerp under climate change: Projected impacts and implications for prevention. Environment international, 111, 135-143. doi: 10.1016/j.envint.2017.11.012

Masson, V. (2000). A physically-based scheme for the urban energy budget in atmospheric models. Boundary-layer meteorology, 94(3), 357-397.

Masson, V., Champeaux, J. L., Chauvin, F., Meriguet, C., & Lacaze, R. (2003). A global database of land surface parameters at 1-km resolution in meteorological and climate models. Journal of climate, 16(9), 1261-1282. doi: 10.1175/1520-0442-16.9.1261

Masson, V., Lion, Y., Peter, A., Pigeon, G., Buyck, J., & Brun, E. (2013). “Grand Paris”: regional landscape change to adapt city to climate warming. Climatic Change, 117(4), 769-782. doi: 10.1007/s10584-012-0579-1

Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.). (2018). Global Warming of 1.5°C: An IPCC Special Report on the Impacts of Global Warming of 1.5° C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty.

Milošević, D. D., Bajšanski, I. V., & Savić, S. M. (2017). Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban forestry & urban greening, 23, 113-124. doi: 10.1016/j.ufug.2017.03.011

Oleson, K. W., Bonan, G. B., & Feddema, J. (2010). Effects of white roofs on urban temperature in a global climate model. Geophysical Research Letters, 37(3). doi: 10.1029/2009GL042194

Robine, J. M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J. P., & Herrmann, F. R. (2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes rendus biologies, 331(2), 171-178. doi: 10.1016/j.crvi.2007.12.001

Rosenzweig, C., Solecki, W. D., Romero-Lankao, P., Mehrotra, S., Dhakal, S., & Ibrahim, S. A. (Eds.). (2018). Climate change and cities: Second assessment report of the urban climate change research network. Cambridge University Press. doi: 10.1017/9781316563878.007

Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R., Bénard, P., Bochenek, B., Degrauwe, D., Derková, M., El Khatib, R., & Hamdi, R. (2018a). The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1. Geoscientific Model Development, 11, 257-281.

Termonia, P., Van Schaeybroeck, B., De Cruz, L., De Troch, R., Caluwaerts, S., Giot, O., Hamdi, R., Vannitsem, S., Duchêne, F., Willems, P. & Tabari, H. (2018b). The CORDEX. be initiative as a foundation for climate services in Belgium. Climate Services, 11, 49-61. doi: 10.1016/j.cliser.2018.05.001

Termonia, P., Van Schaeybroeck, B., De Cruz, L., De Troch, R., Giot, O., Hamdi, R., Vannitsem, S., Duchêne, F., Willems, P., Tabari, H., & Van Uytven, E. (2018c). Combining regional downscaling expertise in Belgium: CORDEX and beyond (No. Final report-BR/143/A2/CORDEX. be). Politique Scientifique Fédérale (Belgique) [Belgian Federal Science Policy].

Top, S., Caluwaerts, S., Van Schaeybroeck, B., Hamdi, R., Duchêne, F., & Termonia, P. (2019). Modelling the urban heat island: sensitivity to land cover data. In 2019 Joint Urban Remote Sensing Event (JURSE) (pp. 1-4). IEEE. 10.1109/JURSE.2019.8809032

Wouters, H., De Ridder, K., Poelmans, L., Willems, P., Brouwers, J., Hosseinzadehtalaei, P., Tabari, H., Broucke, S.V., van Lipzig, N.P.& Demuzere, M. (2017). Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region. Geophysical Research Letters, 44(17), 8997-9007.doi: 10.1002/2017GL074889

Zhou, Y., & Shepherd, J. M. (2010). Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies. Natural Hazards, 52(3), 639-668. http://dx.doi.org/10.1007/s11069-009-9406-z.

Published
2020/01/11
Section
Original Research