Thermal performance of the Urban Weather Generator model as a tool for planning sustainable urban development
Abstract
The research aims at assessing the sensitivity of the Urban Weather Generator v4.1 to the application of different mitigation strategies for the urban heat island under two climatic contexts: desert climate (Mendoza city) and tropical climate (Campinas city). Twenty-four scenarios that modify their morphologic and material parameters were simulated. The results showed that the temperature of the air predicted by the UWG model is not significantly sensitive to the changes produced by the application of different strategies in urban contexts of equal H/W aspect; however, it does show sensitivity to the variation of the H/W aspect (ΔTa ≤ 1.3°C) and the climate context. The highest performance of the UWG model was recorded on the surface temperatures of the urban envelope, with a maximum difference in surface temperature was recorded on high aspect ratio with high albedo in arid climate, (Ts of roof=28°C).
References
Acero, J. A., & Herranz-Pascual, K. (2015). A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Building and Environment, 93, 245–257. https://doi.org/10.1016/j.buildenv.2015.06.028
Alchapar, Noelia L, & Correa, E. N. (2016). The use of reflective materials as a strategy for urban cooling in an arid “ OASIS ” city. Sustainable Cities and Society, 27, 1–14. https://doi.org/10.1016/j.scs.2016.08.015
Alchapar, Noelia Liliana, Pezzuto, C. C., Correa, E. N., & Chebel Labaki, L. (2017). The impact of different cooling strategies on urban air temperatures: the cases of Campinas, Brazil and Mendoza, Argentina. Theoretical and Applied Climatology, 130(1–2), 35–50. https://doi.org/10.1007/s00704-016-1851-5
Bande, L., Afshari, A., Masri, D. Al, Jha, M., Norford, L., Tsoupos, A., … Armstrong, P. (2019). Validation of UWG and ENVI-Met Models in an Abu Dhabi District , Based on Site Measurements.
Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006
Bruse, M., & Fleer, H. (1998). Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software, 13(3–4), 373–384.
Bueno, B., Hidalgo, J., Pigeon, G., Norford, L., & Masson, V. (2013a). Calculation of air temperatures above the urban canopy layer from measurements at a rural operational weather station. Journal of Applied Meteorology and Climatology, 52(2), 472–483. https://doi.org/10.1175/JAMC-D-12-083.1
Bueno, B., Nakano, A., & Norford, L. (2015). Urban weather generator : A method to predict neighborhood-specific urban temperatures for use in building energy simulations. ICUC9 - 9th International Conference on Urban Climate Jointly with 12th Symposium on the Urban Environment. Toulouse, France.
Bueno, B., Norford, L., Hidalgo, J., & Pigeon, G. (2013b). The urban weather generator. Journal of Building Performance Simulation, 6(4), 269–281. https://doi.org/10.1080/19401493.2012.718797
Bueno, B., Roth, M., Norford, L., & Li, R. (2014). Computationally efficient prediction of canopy level urban air temperature at the neighbourhood scale. Urban Climate, 9, 35–53. https://doi.org/10.1016/j.uclim.2014.05.005
Chang, C. R., & Li, M. H. (2014). Effects of urban parks on the local urban thermal environment. Urban Forestry and Urban Greening, 13(4), 672–681. https://doi.org/10.1016/j.ufug.2014.08.001
Climate.OneBuilding.Org. (2019). Repository of free climate data for building performance simulation. Retrieved July 1, 2019, from http://climate.onebuilding.org/
Correa, E. N. (2006). Isla de calor urbana. El caso del área metropolitana de Mendoza. UNSA, Salta, Argentina.
Doyon, B., Bélanger, D., & Gosselin, P. (2008). The potential impact of climate change on annual and seasonal mortality for three cities in Québec, Canada. International Journal of Health Geographics, 7, 1–12. https://doi.org/10.1186/1476-072X-7-23
GOOGLE-EARTH. (2019). Mapa. Retrieved March 19, 2019, from https://www.google.com.br/intl/pt-PT/earth/
Hong, T., Chen, Y., Luo, X., Luo, N., & Lee, S. H. (2020). Ten questions on urban building energy modeling. Building and Environment, 168(August 2019), 106508. https://doi.org/10.1016/j.buildenv.2019.106508
Kim, H., Gu, D., & Kim, H. Y. (2018). Effects of Urban Heat Island mitigation in various climate zones in the United States. Sustainable Cities and Society, 41(June), 841–852. https://doi.org/10.1016/j.scs.2018.06.021
Kottek, M., Jurgen Grieser, Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 3(3), 259–263. https://doi.org/10.5194/hess-11-1633-2007
Mao, J., Fu, Y., Afshari, A., Armstrong, P. R., & Norford, L. K. (2018). Optimization-aided calibration of an urban microclimate model under uncertainty. Building and Environment, 143(April), 390–403. https://doi.org/10.1016/j.buildenv.2018.07.034
Mao, J., Yang, J. H., Afshari, A., & Norford, L. K. (2017). Global sensitivity analysis of an urban microclimate system under uncertainty: Design and case study. Building and Environment, 124, 153–170. https://doi.org/10.1016/j.buildenv.2017.08.011
Masson, V. (2000). A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorology, 94(3), 357–397. https://doi.org/10.1023/A:1002463829265
Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study Urban Heat Island e Abilities and limitations. Building and Environment, 45(10), 2192–2201. https://doi.org/10.1016/j.buildenv.2010.04.001
Ooka, R. (2007). Recent development of assessment tools for urban climate and heat-island investigation especially based on experiences in Japan. Int. J. Climatol, 27, 1919–1930. https://doi.org/10.1002/joc
Palme, M., Inostroza, L., & Salvati, A. (2018). Technomass and cooling demand in South America: a superlinear relationship? Building Research & Information, 46(8), 864–880. https://doi.org/10.1080/09613218.2018.1483868
Palme, M., Lobato, A., & Carrasco, C. (2016). Quantitative Analysis of Factors Contributing to Urban Heat Island Effect in Cities of Latin-American Pacific Coast. Procedia Engineering, 169(March 2019), 199–206. https://doi.org/10.1016/j.proeng.2016.10.024
Palme, M., & Salvati, A. (2018). UWG -TRNSYS Simulation Coupling for Urban Building Energy Modelling. 4th Building Simulation and Optimization Conference, (September). Cambridge, UK.
Perini, K., & Magliocco, A. (2014). Urban Forestry & Urban Greening Effects of vegetation , urban density , building height , and atmospheric conditions on local temperatures and thermal comfort. Urban Forestry & Urban Greening, 13(3), 495–506. https://doi.org/10.1016/j.ufug.2014.03.003
Pezzuto, C. C. (2007). Avaliação do ambiente térmico nos espaços urbanos abertos. Estudo de caso em Campinas, SP. Universidade Estadual de Campinas Faculdade.
Salvati, A., Monti, P., Coch Roura, H., & Cecere, C. (2019). Climatic performance of urban textures: Analysis tools for a Mediterranean urban context. Energy and Buildings, 185, 162–179. https://doi.org/10.1016/j.enbuild.2018.12.024
Salvati, A., Palme, M., & Inostroza, L. (2017). Key Parameters for Urban Heat Island Assessment in A Mediterranean Context: A Sensitivity Analysis Using the Urban Weather Generator Model. IOP Conference Series: Materials Science and Engineering, 245(8). https://doi.org/10.1088/1757-899X/245/8/082055
Sola, A., Corchero, C., Salom, J., & Sanmarti, M. (2018). Simulation Tools to Build Urban-Scale Energy Models: A Review. Energies, 11(12), 3269. https://doi.org/10.3390/en11123269
Sosa, M. B., Cantaloube, E. C., & Canton, M. A. (2017). Forma urbana y comportamiento térmico exterior . Un estudio para reducir la isla de calor urbana en una ciudad árida . Urban form and outdoor thermal behavior . A study for reduce the urban heat island in an arid city . Estudios Del Habitat, 15(2), 1–12.
Yang, X., Zhao, L., Bruse, M., & Meng, Q. (2013). Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Building and Environment, 60, 93–104. https://doi.org/10.1016/j.buildenv.2012.11.008