Outdoor thermal comfort research in urban areas of Central and Southeast Europe: A review
Abstract
Constant urban population growth and intensive urbanization lead to increased pressure on urban areas leading to uncomfortable living conditions. The quality of urban living conditions often depends on the thermal comfort of the open urban spaces, which are used on the daily basis. That is the reason why the attention towards outdoor thermal comfort (OTC) is increasing in the last decade among the researchers from different fields of expertise. In this article, the review of the outdoor thermal comfort research in urban areas of 11 countries of Central and Southeast Europe in the last decade (2010-2019). The main aim of the review is to give a comprehensive, systematic and complete insight in the current situation in the OTC research interest. The results of the review show increased but uneven interest in outdoor thermal comfort by the end of the research period in countries of the Central and Southeast Europe. In total, 120 articles on the topic of outdoor thermal comfort were identified in the research area. The most significant contribution to the urban outdoor thermal comfort research comes from Hungary, Serbia and Greece. Furthermore, five research objectives were identified: methodology improvement and development, climate sensitive and comfortable urban design and planning, citizens/pedestrian comfort and health assessment and improvement, tourism and health sector support and literature review.
References
Anđelković, G., Pavlović, S., Ðurđić, S., Belij, M., & Stojković, S. (2016). Tourism climate comfort index (TCCI)-an attempt to evaluate the climate comfort for tourism purposes: the example of Serbia. Global NEST Journal, 18(3), 482-493.
ASHRAE (2004). Standard 90.1-2004, Energy standard for buildings except low rise residential buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
Bajçinovci, B. (2017). Achieving thermal comfort and sustainable urban development in accordance with the principles of bioclimatic architecture: A case study of Ulcinj (Montenegro). Quaestiones Geographicae, 36(4), 131-140.
Bajšanski, I. V., Milošević, D. D., & Savić, S. M. (2015). Evaluation and improvement of outdoor thermal comfort in urban areas on extreme temperature days: Applications of automatic algorithms. Building and Environment, 94, 632-643.
Basarin, B., Lukić, T., & Matzarakis, A. (2016). Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia. International journal of biometeorology, 60(1), 139-150.
Basarin, B., Lukić, T., Mesaroš, M., Pavić, D., Đorđević, J., & Matzarakis, A. (2018). Spatial and temporal analysis of extreme bioclimate conditions in Vojvodina, Northern Serbia. International Journal of Climatology, 38(1), 142-157.
Błażejczyk, K., Baranowski, J., Jendritzky, G., Błażejczyk, A., Bröde, P., & Fiala, D. (2015). Regional features of the bioclimate of central and southern Europe against the background of the Köppen-Geiger climate classification. Geographia Polonica, 88(3), 439-453.
Bleta, A., & Nastos, P. (2015). Present and Future Human Thermal Bioclimatic Conditions and Impacts on Respiratory Admissions in Crete Island, Greece. In EGU General Assembly Conference Abstracts (Vol. 17).
Bogdanović-Protić, I. S., Vukadinović, A. V., Radosavljević, J. M., Alizamirc, M., & Mitković, M. P. (2016). Forecasting of outdoor thermal comfort index in urban open spaces: The Nis fortress case study. Thermal Science, 20(5), 1531-1539.
Brosy, C., Zaninovic, K., & Matzarakis, A. (2014). Quantification of climate tourism potential of Croatia based on measured data and regional modeling. International journal of biometeorology, 58(6), 1369-1381
Burić, D., Luković, J., Ducić, V., Dragojlović, J., & Doderović, M. (2014). Recent trends in daily temperature extremes over southern Montenegro (1951–2010). Natural Hazards and Earth System Sciences, 14(1), 67-72.
Burić, D., Ducić, V., Mihajlović, J., Luković, J., & Dragojlović, J. (2015). Recent extreme air temperature changes in Montenegro. Bulletin of the Serbian geographical society, 95(4), 53-66.
Charalampopoulos, I., Tsiros, I.,Chronopoulou-Sereli, A., & Matzarakis, A. (2013). Analysis of thermal bioclimate in various urban configurations in Athens, Greece. Urban Ecosystems, 16(2), 217-233.
Chatzidimitriou, A., & Yannas, S. (2016). Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer. Sustainable Cities and Society, 26, 27-47.
Cheval, S., & Dumitrescu, A. (2014). The summer urban heat island of Bucharest (Romania) as retrieved from satellite imagery. In EGU General Assembly Conference Abstracts (Vol. 16).
Cheval, S., Lucaschi, B., Ioja, C., Dumitrescu, A., Manea, A., Radulescu, A., Dumitrache, C., Tudorache, G., Vanau, G., & Onose, D. (2015). Monitoring the urban heat island of Bucharest (Romania) through a network of automatic meteorological sensors-first results. In EGU General Assembly Conference Abstracts (Vol. 17).
Cheval, S., Ciobotaru, A. M., Andronache, I., & Dumitrescu, A. (2017). Monitoring and assessment of the outdoor thermal comfort in Bucharest (Romania). In EGU General Assembly Conference Abstracts (Vol. 19, p. 14545).
Ciupertea, A. F., Piticar, A., Djurdjevic, V., Croitoru, A. E., & Bartok, B. (2017). Future Changes In Extreme Temperature Indices In Cluj-Napoca, Romania. Aerul si Apa. Componente ale Mediului, 235-242.
Coccolo, S., Kämpf, J., Scartezzini, J. L., & Pearlmutter, D. (2016). Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate, 18, 33-57.
Croitoru, A. E., & Piticar, A. (2013). Changes in daily extreme temperatures in the extra‐Carpathians regions of Romania. International Journal of Climatology, 33(8), 1987-2001.
Croitoru, A. E., Piticar, A., Ciupertea, A. F., & Roşca, C. F. (2016). Changes in heat waves indices in Romania over the period 1961–2015. Global and planetary change, 146, 109-121.
Dervishi, S., Lacaj, E., & Vathi, R. (2012). Urban heat islands (UHI) mitigation in densely urban city of Tirana, Albania: Materials, energy, comfort. International Journal of Business and Technology, 1(1), 48-57.
Dimoudi, A., Kantzioura, A., Zoras, S., & Kosmopoulos, P. (2012). The influence of urban design in microclimate inside the urban canyons. ICUC8 – 8th International Conference on Urban Climates, 6th-10th August, 2012, UCD, Dublin Ireland.
Dimoudi, A., Zoras, S., Kantzioura, A., Stogiannou, X., Kosmopoulos, P., & Pallas, C. (2014). Use of cool materials and other bioclimatic interventions in outdoor places in order to mitigate the urban heat island in a medium size city in Greece. Sustainable Cities and Society, 13, 89-96.
Dimitris, F., Catherine, B., Aris, T., Thomas, B., & Constantinos, K. (2017). CFD Study of Thermal Comfort in Urban Area. Energy and Environmental Engineering, 5(1), 8-18.
Doderovic, M. M., & Buric, D. B. (2015). Atlantic Multi-Decadal Oscillation And Changes Of Summer Air Temperature In Montenegro. Thermal Science, 19(2), 405-414.
Dragota, C. S., & Havris, L. E. (2015). Changes in Frequency, persistence and intensity of extreme high-temperature events in the Romanian Plain. Aerul si Apa. Componente ale Mediului, 17.
Djekic, J., Djukic, A., Vukmirovic, M., Djekic, P., & Brankovic, M. D. (2018a). Thermal comfort of pedestrian spaces and the influence of pavement materials on warming up during summer. Energy and Buildings, 159, 474-485.;
Đekić, J. P., Mitković, P. B., Dinić-Branković, M. M., Igić, M. Z., Đekić, P. S., & Mitković, M. P. (2018b). The study of effects of greenery on temperature reduction in urban areas. Thermal Science, 22(4), 988-1000.
Djukic, A., Vukmirovic, M., & Stankovic, S. (2016). Principles of climate sensitive urban design analysis in identification of suitable urban design proposals. Case study: Central zone of Leskovac competition. Energy and Buildings, 115, 23-35.
Gál, C. V. (2018). Modeling mean radiant temperature in outdoor spaces, A comparative numerical simulation and validation study. In 10th International Conference on Urban Climate jointly with 14th Symposium on the Urban Environment, New York, NY, USA, 6-10 August 2018.
Giannaros, T. M., & Melas, D. (2012). Study of the urban heat island in a coastal Mediterranean City: The case study of Thessaloniki, Greece. Atmospheric Research, 118, 103-120.
Gospodinov, I., & Tzenkova-Bratoeva, A. (2010). Spatial and temporal variability of the rate of change of the winter thermal comfort conditions in Bulgaria. Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg, 195.
Gulyás, Á., Unger, J., & Matzarakis, A. (2006). Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Building and Environment, 41(12), 1713-1722.
Gulyás, Á., Matzarakis, A., & Unger, J. (2010). Comparison of the urban-rural comfort sensation in a city with warm continental climate. Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg, 20, 473-478.
Herbel, I., Croitoru, A. E., Rus, I., Harpa, G. V., & Ciupertea, A. F. (2016). Detection of atmospheric urban heat island through direct measurements in Cluj-Napoca city, Romania. Hungarian Geographical Bulletin, 65(2), 117-128.
Hondula, D. M., Balling, R. C., Andrade, R., Krayenhoff, E. S., Middel, A., Urban, A., Georgescu, M., & Sailor, D. J. (2017). Biometeorology for cities. International journal of biometeorology, 61(1), 59-69.
Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International journal of Biometeorology, 43(2), 71-75.
Ionac, N., Năftănăilă, V., & Matei, M. (2012a). Cold Waves: Meteorological Characteristics And Biometeorological Influences (Case Study: Romania, 29th January-3rd February 2012). Present Environment & Sustainable Development, 6(2).
Ionac, N., Tăbleţ, P., & Mihoc, A. C. (2012b). Heat waves: Meteorological characteristics and biometeorological influences (Case study: Romania, 14-16TM July 2011. Present Environment & Sustainable Development, 6(1), p181-194.
Ivanov, V., & Evtimov, S. (2014). Heat Risks in Bulgaria during 2003-2012 period. Bulgarian Geophysical Journal, 40, 3-13.
Ivanova, V. (2016). Extreme temperatures trends in Eastern Bulgaria during the period 1959-2009. Aerul si Apa. Componente ale Mediului, 117.
Ivanova, V. (2017). Heat waves over Varna region and an opportunity for their forecasting. Varna Medical Forum, 5, 101-105.
Fikfak, A., Kosanović, S., Konjar, M., Grom, J., & Zbašnik-Senegačnik, M. (2017). The impact of morphological features on summer temperature variations on the example of two residential neighborhoods in Ljubljana, Slovenia. Sustainability, 9(1), 122.
Fintikakis, N., Gaitani, N., Santamouris, M., Assimakopoulos, M., Assimakopoulos, D. N., Fintikaki, M., Albanis, G., Papadimitriou, K., Chryssochoides, E., Katopodi, K. & Doumas, P. (2011). Bioclimatic design of open public spaces in the historic centre of Tirana, Albania. Sustainable Cities and Society, 1(1), 54-62.;
Founda, D., Pierros, F., Petrakis, M., & Zerefos, C. (2015). Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves. Atmospheric Research, 161, 1-13.
Founda, D., & Santamouris, M. (2017). Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012). Scientific reports, 7(1), 10973.
Jahić, H., & Mezetović, A. (2014). Statistical identification and qualitative Evaluation of Climate tourism Potential by Using Tourism Climate Index - TCI on the Example of Herzegovina-Neretva Canton. Acta geographicaBosniae et Herzegovinae, 2, 77-89.
Johansson, E., Thorsson, S., Emmanuel, R., & Krüger, E. (2014). Instruments and methods in outdoor thermal comfort studies–The need for standardization. Urban climate, 10, 346-366.
Joksimović, M., Gajić, M., & Golić, R. (2013). Tourism climatic index in the valorisation of climate in tourist centers of Montenegro. Bulletin of the Serbian geographical society, 93(1).
Kántor, N., & Unger, J. (2010). Benefits and opportunities of adopting GIS in thermal comfort studies in resting places: an urban park as an example. Landscape and Urban Planning, 98(1), 36-46.;
Kántor, N., & Unger, J. (2011). The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Open Geosciences, 3(1), 90-100.
Kántor, N., Égerházi, L., & Unger, J. (2012a). Subjective estimation of thermal environment in recreational urban spaces—part 1: investigations in Szeged, Hungary. International Journal of Biometeorology, 56(6), 1075-1088.;
Kántor, N., Unger, J., & Gulyás, Á. (2012b). Subjective estimations of thermal environment in recreational urban spaces—part 2: international comparison. International journal of biometeorology, 56(6), 1089-1101.
Kántor, N., Kovács, A., & Takács, Á. (2016a). Small-scale human-biometeorological impacts of shading by a large tree. Open Geosciences, 8(1), 231-245.;
Kántor, N. (2016b). Differences between the evaluation of thermal environment in shaded and sunny position. Hungarian Geographical Bulletin, 65(2), 139-153.
Kántor, N., Kovács, A., & Takács, Á. (2016c). Seasonal differences in the subjective assessment of outdoor thermal conditions and the impact of analysis techniques on the obtained results. International journal of biometeorology, 60(11), 1615-1635.
Kántor, N., Chen, L., & Gál, C. V. (2018). Human-biometeorological significance of shading in urban public spaces—Summertime measurements in Pécs, Hungary. Landscape and urban planning, 170, 241-255.
Kaplan, G., Avdan, U., & Avdan, Z. Y. (2018). Urban heat island analysis using the landsat 8 satellite data: A case study in Skopje, Macedonia. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 2, No. 7, p. 358)
Kendrovski, V., Donev, D., Spasenovska, M., & Kisman–Hristovska, M. Climate Change and Human Health in the Republic of Macedonia: Impacts, Vulnerability and Adaptation in Heat Wave Mortality. (2011). The European Journal of Management and Public Policy, 11(1), 71-84.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263.
Kovács, A., & Németh, Á. (2012). Tendencies and differences in human thermal comfort in distinct urban areas in Budapest, Hungary. Acta Climatologica et Chorologica, 46, 115-124.
Lai, D., Liu, W., Gan, T., Liu, K., & Chen, Q. (2019). A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment.
Lehnert, A, M., Kubeček, J., Geletič, J., Jurek, M., & Frajer, J. (2018). Identifying hot and cool spots in the city centre based on bicycle measurements: the case of Olomouc, Czech Republic. Geographica Pannonica, 22(4), 230-240.
Lukić, M., Pecelj, M., Protić, B., & Filipović, D. (2019). An evaluation of summer discomfort in Niš (Serbia) using Humidex. Journal of the Geographical Institute" Jovan Cvijic", SASA, 69(2), 109-122.
Malcheva, K., & Gocheva, A. (2014). Thermal comfort indices for the cold half-year in Sofia. Bulgarian Journal of Meteorology and Hydrology, 19(1–2), 16-25.
Malcheva, K. (2017). Cold waves on the territory of Bulgaria in the period 1952-2011. Bulgarian Journal of Meteorology and Hydrology, 22(3-4), 16-31.
Malinovic-Milicevic, S., Mihailovic, D. T., Lalic, B., & Dreskovic, N. (2013). Thermal environment and UV-B radiation indices in the Vojvodina region, Serbia. Climate research, 57(2), 111-121.
Malltezi, J., Hanxhari, R., Zela, G., & Sulçe, S. (2015). Climate Change Adaptation Actions in Tirana. Albanian Journal of Agricultural Sciences, 14(2), 102.
Marques, D., Lopes, A.,Bojariu, R., & Bicu, E. A. (2015). The heat stress assessment of two contrasted outdoor urban environments: the examples of Lisbon (Portugal) and Bucharest (Romania). ICUC9 International Conference on Urban Climate, Losbon, Portugal.
Mihăilă, D., Bistricean, P. I., & Briciu, A. E. (2019). Assessment of the climate potential for tourism. Case study: the North-East Development Region of Romania. Theoretical and Applied Climatology, 137(1-2), 601-622.
Milošević, D. D., Unger, J., & Gál, T. (2015a). Thermal comfort observations in the City of Novi Sad (Serbia) in 2014. EUGEO 2015 – Convergences And Divergences Of Geography In Europe, Hungary: Budapest.
Milošević, D. D., Savić, S. M., Unger, J., & Gál, T. (2015b). Urban climate monitoring system suitability for intra-urban thermal comfort observations in Novi Sad (Serbia)–with 2014 examples. ICUC9 - 9th International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment, Portugal:Lisbon
Milošević, D. D., Savić, S. M., Marković, V., Arsenović, D., & Šećerov, I. (2016). Outdoor human thermal comfort in local climate zones of Novi Sad (Serbia) during heat wave period. Hungarian Geographical Bulletin, 65(2), 129-137.
Milošević, D. D., Savić, S. M., & Bajšanski, I. V. (2017a). Applications of automatic algorithms for improvement of outdoor thermal comfort in cities. Procedia engineering, 198, 187-192.;
Milošević, D. D., Bajšanski, I. V., & Savić, S. M. (2017b). Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban forestry & urban greening, 23, 113-124.
Moustris, K., Tsiros, I. X., Tseliou, A., & Nastos, P. (2018). Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station. International journal of biometeorology, 62(7), 1265-1274.
Nastos, P. T., & Matzarakis, A. (2012). The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theoretical and Applied Climatology, 108(3-4), 591-599.
Nastos, P. T., & Matzarakis, A. (2013). Human bioclimatic conditions, trends, and variability in the Athens University Campus, Greece. Advances in Meteorology.
Nastos, P. T., Zerefos, C. S., Kapsomenakis, I. N., Eleftheratos, K., & Polychroni, I. (2016). Human thermal comfort antithesis in the context of the Mediterranean tourism potential. In EGU General Assembly Conference Abstracts (Vol. 18).
Nastos, P. T., & Polychroni, I. D. (2016). Modeling and in situ measurements of biometeorological conditions in microenvironments within the Athens University Campus, Greece. International journal of biometeorology, 60(10), 1463-1479.
Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban climates. Cambridge University Press.
Pajek, L., Tekavec, J., Drešček, U., Lisec, A., & Košir, M. (2019). Bioclimatic potential of European locations: GIS supported study of proposed passive building design strategies. In IOP Conference Series: Earth and Environmental Science (Vol. 296, No. 1, p. 012008). IOP Publishing.
Panariti, A. T., Maliqari, A., Tashi, P., & Islami, G. (2014). Heat Emissions of Urban Texture in Public Space. Proceedings from the ICRAE Conference, 30-31 May 2014, Albania: Shkodra.
Panariti, A. T., Maliqari, A., & Tashi, P. (2015). The Impact of Urban Texture in Outdoor Thermal Comfort. International Journal of Science and Research, 4(12), 1629-1633.
Pantavou, K., Theoharatos, G., Mavrakis, A., & Santamouris, M. (2011). Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. Building and Environment, 46(2), 339-344.
Pantavou, K., Theoharatos, G., Santamouris, M., & Asimakopoulos, D. (2013). Outdoor thermal sensation of pedestrians in a Mediterranean climate and a comparison with UTCI. Building and Environment, 66, 82-95.
Papamanolis, N. (2015). The main characteristics of the urban climate and the air quality in Greek cities. Urban Climate, 12, 49-64.
Papathoma-Koehle, M., Promper, C., Bojariu, R., Cica, R., Sik, A., Perge, K., László, P., Czikora, E.B., Dumitrescu, A., Turcus, C., & Birsan, M. V. (2016). A common methodology for risk assessment and mapping for south-east Europe: an application for heat wave risk in Romania. Natural Hazards, 82(1), 89-109.
Paravantis, J., Santamouris, M., Cartalis, C., Efthymiou, C., & Kontoulis, N. (2017). Mortality associated with high ambient temperatures, heatwaves, and the urban heat island in Athens, Greece. Sustainability, 9(4), 606.
Pecelj, M., Pecelj, M., Cutovic, M., Pavlovic, M., Zivkovic, D., Zivkovic, L., Vujadinovic, S., Pecelj, J., Gajic, M. & Mandic, D. (2011). Bioclimate weather classification of Doboj for helth spa tourism. In Proceedings of the 10th WSEAS international conference on Artificial intelligence, knowledge engineering and data bases (pp. 292-296).
Perčič, S., Kukec, A., Cegnar, T., & Hojs, A. (2018). Number of heat wave deaths by diagnosis, sex, age groups, and area, in Slovenia, 2015 vs. 2003. International journal of environmental research and public health, 15(1), 173.
Piticar, A., Croitoru, A. E., Ciupertea, F. A., & Harpa, G. V. (2018). Recent changes in heat waves and cold waves detected based on excess heat factor and excess cold factor in Romania.
Pogačar, T., Črepinšek, Z., Bogataj, L. K., & Lars, N. Y. B. O. (2017). Comprehension of climatic and occupational heat stress amongst agricultural advisers and workers in Slovenia. Acta Agriculturae Slovenica, 109(3), 545-554.
Pogačar, T., Žnidaršič, Z., Kajfež Bogataj, L., Flouris, A. D., Poulianiti, K., & Črepinšek, Z. (2019a). Heat Waves Occurrence and Outdoor Workers’ Self-assessment of Heat Stress in Slovenia and Greece. International journal of environmental research and public health, 16(4), 597.
Pogačar, T., Žnidaršič, Z., Črepinšek, Z., & Bogataj, L. K. (2019b). Aggravated Occupational Heat Stress Recognition and Mitigation in Slovenia. In Climate Change Adaptation in Eastern Europe (pp. 267-277). Springer, Cham.
Popov, T., Gnjato, S., Trbic, G., & Ivanisevic, M. (2018a). Recent trends in extreme temperature indices in Bosnia and Herzegovina. Carpathian Journal of Earth and Environmental Sciences, 13(1), 211-224.
Popov, T., Gnjato, S., & Trbić, G. (2018b). Changes in Temperature Extremes in Bosnia and Herzegovina: A Fixed Thresholds-based Index Analysis. Journal of the Geographical Institute 'Jovan Cvijic' SASA, 68(1).
Popov, T., Gnjato, S., & Trbić, G. (2019). Effects of Changes in Extreme Climate Events on Key Sectors in Bosnia and Herzegovina and Adaptation Options. In Climate Change Adaptation in Eastern Europe (pp. 213-228). Springer, Cham. DOI: 10.1007/978-3-030-03383-5_15
Porja, T. (2013). Heat Waves Affecting Weather and Climate over Albania. Journal of Earth Science and Climatic Change, 4(149), 2.
Santos Nouri, A., Costa, J. P., Santamouris, M., & Matzarakis, A. (2018). Approaches to outdoor thermal comfort thresholds through public space design: A review. Atmosphere, 9(3), 108.
Savić, S., Milošević, D., Lazić, L., Marković, V., Arsenović, D., & Pavić, D. (2013). Classifying urban meteorological stations sites by'local climate zones': Preliminary results for the city of Novi Sad (Serbia). Geographica Pannonica, 17(3), 60-68.
Savić, S., Selakov, A., & Milošević, D. (2014). Cold and warm air temperature spells during the winter and summer seasons and their impact on energy consumption in urban areas. Natural hazards, 73(2), 373-387.
Savić, S., Milošević, D., Arsenović, D., Marković, V., Bajšanski, I., & Šećerov, I. (2016). Urban climate issues in complex urbanized environments: A review of the literature for Novi Sad (Serbia). Acta Climatologica et Chorologica, 36(37), 63-80.
Savić, S., Marković, V., Šećerov, I., Pavić, D., Arsenović, D., Milošević, D.,Dolinaj, D., Nagy, I., & Pantelić, M. (2018). Heat wave risk assessment and mapping in urban areas: case study for a midsized Central European city, Novi Sad (Serbia). Natural hazards, 91(3), 891-911.
Šećerov, I., Savić, S., Milošević, D., Marković, V., & Bajšanski, I. (2015). Development of an automated urban climate monitoring system in Novi Sad (Serbia). Geographica Pannonica, 19(4), 174-183.
Sippel, S., & Otto, F. E. (2014). Beyond climatological extremes-assessing how the odds of hydrometeorological extreme events in South-East Europe change in a warming climate. Climatic Change, 125(3-4), 381-398.
Skarbit, N., Stewart, I. D., Unger, J., & Gál, T. (2017). Employing an urban meteorological network to monitor air temperature conditions in the ‘local climate zones’ of Szeged, Hungary. International Journal of Climatology, 37, 582-596.
Stanojević, G., Stojilković, J., Spalević, A., & Kokotović, V. (2014a). The impact of heat waves on daily mortality in Belgrade (Serbia) during summer. Environmental Hazards, 13(4), 329-342.
Stanojević, G., Spalević, A., Kokotović, V., & Stojilković, J. (2014b). Does Belgrade (Serbia) need heat health warning system?. Disaster Prevention and Management, 23(5), 494-507.
Takács, Á., Kiss, M., Hof, A., Tanács, E., Gulyás, Á., & Kántor, N. (2016a). Microclimate modification by urban shade trees–an integrated approach to aid ecosystem service based decision-making. Procedia Environmental Sciences, 32, 97-109.
Takács, Á., Kiss, M., Hof, A., Tanács, E., Gulyás, Á., & Kántor, N. (2016b). Microclimate modification by urban shade trees–an integrated approach to aid ecosystem service based decision-making. Procedia Environmental Sciences, 32, 97-109.
Teodoreanu, E. (2016). Thermal Comfort Index. Present Environment and Sustainable Development, 10(2), 105-118.
Theoharatos, G., Pantavou, K., Mavrakis, A., Spanou, A., Katavoutas, G., Efstathiou, P., Mpekas, P., & Asimakopoulos, D. (2010). Heat waves observed in 2007 in Athens, Greece: synoptic conditions, bioclimatological assessment, air quality levels and health effects. Environmental Research, 110(2), 152-161.
Trbic, G., Bajic, D., Djudjdevic, V., Crnogorac, C., Popov, T., Dekic, R., Petrasevic, A. & Rajcevic, V. (2016). The impact of climate change on the modification of bioclimatic conditions in Bosnia and Herzegovina. International Journal of Education and Learning Systems, 1.
Trbić, G., Popov, T., & Gnjato, S. (2017). Analysis of air temperature trends in Bosnia and Herzegovina. Geographica Pannonica, 21(2), 68-84.
Tsitoura, M., Tsoutsos, T., & Daras, T. (2014). Evaluation of comfort conditions in urban open spaces. Application in the island of Crete. Energy conversion and management, 86, 250-258.
Unger, J., Gál, T. M., Csépe, Z., Lelovics, E., & Gulyás, Á. (2015). Development, data processing and preliminary results of an urban human comfort monitoring and information system. IDŐJÁRÁS, 119(3),337-354
Unger, J., Skarbit, N., & Gál, T. (2018). Evaluation of outdoor human thermal sensation of local climate zones based on long-term database. International journal of biometeorology, 62(2), 183-193.
Unkašević, M., & Tošić, I. (2013). Trends in temperature indices over Serbia: relationships to large‐scale circulation patterns. International journal of climatology, 33(15), 3152-3161.
Unkašević, M., & Tošić, I. (2015). Seasonal analysis of cold and heat waves in Serbia during the period 1949–2012. Theoretical and applied climatology, 120(1-2), 29-40.
Velea, L., Bojariu, R., Udristioiu, M. T., Sararu, S. C., Gothard, M., & Dascalu, S. I. (2019). Assessment of summer thermal comfort using the net effective temperature index over Romania. In AIP Conference Proceedings (Vol. 2071, No. 1, p. 040004).
Vidrih, B., & Medved, S. (2013). Multiparametric model of urban park cooling island. Urban Forestry & Urban Greening, 12(2), 220-229.
Vitt, R., Gulyás, Á., & Matzarakis, A. (2015). Temporal differences of urban-rural human biometeorological factors for planning and tourism in Szeged, Hungary. Advances in Meteorology.
Vučković, D., Jovic, S., Bozovic, R., Dżamić, V., & Kićović, D. (2019). Potential of neuro-fuzzy methodology for forecasting of outdoor thermal comfort index at urban open spaces. Urban Climate, 28, 100467
Zaninović, K. (2011). Impact of extreme thermal conditions on mortality in Croatia (Doctoral dissertation), Sveučilište u Zagrebu: Prirodoslovno-matematički fakultet
Zaninovic, K. (2013). Potential of beach tourism in Croatia using climate index for tourism. In EMS Annual Meeting Abstracts (Vol. 10).
Zaninović, K., & Matzarakis, A. (2014). Impact of heat waves on mortality in Croatia. International journal of biometeorology, 58(6), 1135-1145.;
Žiberna, I., & Ivajnšič, D. (2018). Heat waves in Maribor between 1961-2018. Revija za geografijo-Journal for Geography, 13(2), 73-90.
Zoras, S. (2013). Urban environment thermal improvement by the bioclimatic simulation of a populated open urban space in Greece. International Journal of Ambient Energy, 36(4), 156-169.