A review of climatic and vegetation surveys in urban environment with laser scanning: a literature-based analysis

  • Zsuzsanna Szabó Department of Physical Geography and Geoinformatics, University of Debrecen
  • Aletta Schlosser Department of Physical Geography and Geoinformatics, University of Debrecen
  • Zoltán Túri Department of Physical Geography and Geoinformatics, University of Debrecen
  • Szilárd Szabó Department of Physical Geography and Geoinformatics, University of Debrecen

Abstract


Laser scanning is a promising relatively new technology of land surveying and has different contributions to research areas and practical applications. We performed a review based on query terms in the Scopus database. We determined the number of papers where the laser scanning was the technique of the survey and refined the results with the aerial (ALS) and terrestrial (TLS) laser scanning methods, and the urban and vegetation searching terms. Results showed that geosciences had a 30-40% ratio within the scientific papers using LiDAR. TLS had larger relevance related to ALS considering the total number of research papers, urban application and vegetation analysis in urban environment. We analysed the current status of the technology and discussed the underlying possible causes.

References

Abriha, D., Kovács, Z., Ninsawat, S., Bertalan, L., Balázs, B., & Szabó, S. (2018). Identification of roofing materials with discriminant function analyand random forest classifiers on pan-sharpened worldview-2 imagery – A comparison. Hungarian Geographical Bulletin, 67(4), 375–392. https://doi.org/10.15201/hungeobull.67.4.6

Azhar, S. (2011). Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadership and Management in Engineering, 11(3), 241–252. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000127

Baltensweiler, A., Walthert, L., Ginzler, C., Sutter, F., Purves, R. S., & Hanewinkel, M. (2017). Terrestrial laser scanning improves digital elevation models and topsoil pH modelling in regions with complex topography and dense vegetation. Environmental Modelling and Software, 95, 13–21. https://doi.org/10.1016/j.envsoft.2017.05.009

Banta, R. M., Pichugina, Y. L., Kelley, N. D., Hardesty, R. M., & Brewer, W. A. (2013). Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution doppler lidar. Bulletin of the American Meteorological Society, 94(6), 883–902. https://doi.org/10.1175/BAMS-D-11-00057.1

Bin, X., Fangfei, L., Keshu, Z., & Zongjian, L. (2008). Laser footprint size and pointing precision analysis for LiDAR systems. The International Archives of the …, XXXVII, 331–336. Retrieved from http://www.isprs.org/proceedings/XXXVII/congress/1_pdf/55.pdf

Bournez, E., Landes, T., Saudreau, M., Kastendeuch, P., & Najjar, G. (2016). Impact of level of details in the 3D reconstruction of trees for microclimate modeling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41(July), 257–264. https://doi.org/10.5194/isprsarchives-XLI-B8-257-2016

Brolly, G., & Király, G. (2011). Automatizált törzstérképezés földi lézerszkennelés adatainak objektum-orientált feldolgozásával (Automatic stem detection from terrestrial laser scanner data by object-oriented approach). Geomatikai Közlemények, XIV(1), 139–148.

Chen, M., Pan, J., & Xu, J. (2018). Classification of Terrestrial Laser Scanning Data With Density-Adaptive Geometric Features. IEEE Geoscience and Remote Sensing Letters, 15(11), 1795–1799. https://doi.org/10.1109/LGRS.2018.2860589

Coveney, S., & Fotheringham, S. A. (2011). Terrestrial laser scan error in the presence of dense ground vegetation. Photogrammetric Record, 26(135), 307–324. https://doi.org/10.1111/j.1477-9730.2011.00647.x

Demir, N., Poli, D., & Baltsavias, E. (2008). Extraction of buildings and trees using images and LIDAR data: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B4), 313–318. https://doi.org/Export Date 6 May 2013

Dong, P., & Chen, Q. (2018). LiDAR Remote Sensing and Applications (1st ed.). CRC Press.

Du, S., Zhang, Y., Zou, Z., Xu, S., He, X., & Chen, S. (2017). Automatic building extraction from LiDAR data fusion of point and grid-based features. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 294–307. https://doi.org/10.1016/j.isprsjprs.2017.06.005

Ebrahim, M. (2016). 3D Laser Scanners: History, Applications and Future. LAP LAMBERT Academic Publishing, (October), 104. https://doi.org/10.13140/2.1.3331.3284

Estornell, J., Velázquez-Martí, B., Fernández-Sarriá, A., & Martí, J. (2018). Lidar methods for measurement of trees in urban forests. Journal of Applied Remote Sensing, 12(4). https://doi.org/10.1117/1.JRS.12.046009

Froidevaux, M., Higgins, C. W., Simeonov, V., Ristori, P., Pardyjak, E., Serikov, I., … Parlange, M. B. (2013). A Raman lidar to measure water vapor in the atmospheric boundary layer. Advances in Water Resources, 51, 345–356. https://doi.org/10.1016/j.advwatres.2012.04.008

Gallay, M., Lloyd, C. D., McKinley, J., & Barry, L. (2013). Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: A case study from the Lake District, England. Computers and Geosciences, 51, 216–227. https://doi.org/10.1016/j.cageo.2012.08.015

Gruszczyński, W., Matwij, W., & Ćwiąkała, P. (2017). Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 126, 168–179. https://doi.org/10.1016/j.isprsjprs.2017.02.015

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.

Kankare, V., Puttonen, E., Holopainen, M., & Hyyppä, J. (2016). The effect of TLS point cloud sampling on tree detection and diameter measurement accuracy. Remote Sensing Letters, 7(5), 495–502. https://doi.org/10.1080/2150704X.2016.1157639

Kassambara, A. (2019). R topics documented: Package ‘ ggpubr .’ Retrieved from https://rpkgs.datanovia.com/ggpubr/

Kiemle, C., Ehret, G., Giez, A., Davis, K. J., Lenschow, D. H., & Oncley, S. P. (1997). Estimation of boundary layer humidity fluxes and statistics from airborne differential absorption lidar (DIAL). Journal of Geophysical Research Atmospheres, 102(24), 29189–29203. https://doi.org/10.1029/97jd01112

Koma, Z., Koenig, K., & Höfle, B. (2016). Urban Tree Classification Using Full-Waveform Airborne Laser Scanning. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3(July), 185–192. https://doi.org/10.5194/isprs-annals-III-3-185-2016

Kong, F., Yan, W., Zheng, G., Yin, H., Cavan, G., Zhan, W., … Cheng, L. (2016). Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agricultural and Forest Meteorology, 217, 22–34. https://doi.org/10.1016/j.agrformet.2015.11.005

Koreň, M., Mokroš, M., & Bucha, T. (2017). Accuracy of tree diameter estimation from terrestrial laser scanning by circle-fitting methods. International Journal of Applied Earth Observation and Geoinformation, 63(July), 122–128. https://doi.org/10.1016/j.jag.2017.07.015

Large, A. R. G., & Heritage, G. L. (2009). Laser Scanning – Evolution of the Discipline. In G. L. Heritage & A. R. G. Large (Eds.), Laser Scanning for the Environmental Sciences (pp. 1–20). https://doi.org/10.1002/9781444311952.ch1

Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., … Wang, Y. (2018). International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 144(July), 137–179. https://doi.org/10.1016/j.isprsjprs.2018.06.021

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., … Vastaranta, M. (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63–77. https://doi.org/10.1016/j.isprsjprs.2016.01.006

Lovas, T., Berényi, A., & Barsi, Á. (2012). Lézerszkennelés (Laser Scanning). Budapest: BME Építőmérnöki Kar Fotogrammetriai és Térinformatikai Tanszék, Terc.

Luo, T., Yuan, R., & Wang, Z. (2014). Lidar-based remote sensing of atmospheric boundary layer height over land and ocean. Atmospheric Measurement Techniques, 7(1), 173–182. https://doi.org/10.5194/amt-7-173-2014

Marchi, N., Pirotti, F., & Lingua, E. (2018). Airborne and terrestrial laser scanning data for the assessment of standing and lying deadwood: Current situation and new perspectives. Remote Sensing, 10(9), 1–21. https://doi.org/10.3390/rs10091356

Mikkelsen, T. (2014). Lidar-based research and innovation at DTU wind energy- A review. Journal of Physics: Conference Series, 524(1). https://doi.org/10.1088/1742-6596/524/1/012007

Milošević, D. D., Bajšanski, I. V., & Savić, S. M. (2017). Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban Forestry and Urban Greening, 23, 113–124. https://doi.org/10.1016/j.ufug.2017.03.011

Milošević, D. D., Savić, S. M., Marković, V., Arsenović, D., & Šećerov, I. (2016). Outdoor human thermal comfort in local climate zones of Novi Sad (Serbia) during heat wave period. Hungarian Geographical Bulletin, 65(2), 129–317. https://doi.org/10.15201/hungeobull.65.2.4

Moskal, L. M., & Zheng, G. (2012). Retrieving forest inventory variables with terrestrial laser scanning (TLS) in urban heterogeneous forest. Remote Sensing, 4(1), 1–20. https://doi.org/10.3390/rs4010001

Mücke, W., Deák, B., Schroiff, A., Hollaus, M., & Pfeifer, N. (2013). Detection of fallen trees in forested areas using small footprint airborne laser scanning data. Canadian Journal of Remote Sensing, 39(SUPPL.1), 32–40. https://doi.org/10.5589/m13-013

Mudicka, S., Matolak, M., & Kapica, R. (2019). Application of handheld scanner in documentation of historical buildings. 19th International Multidisciplinary Scientific GeoConference SGEM 2019, 39–46. https://doi.org/10.5593/sgem2019/2.2/S09.006

Nguyen, H. T., Pearce, J. M., Harrap, R., & Barber, G. (2012). The application of LiDAR to assessment of rooftop solar photovoltaic deployment potential in a municipal district unit. Sensors, 12(4), 4534–4558. https://doi.org/10.3390/s120404534

Nocerino, E., Menna, F., Remondino, F., Toschi, I., & Rodríguez-Gonzálvez, P. (2017). Investigation of indoor and outdoor performance of two portable mobile mapping systems. Videometrics, Range Imaging, and Applications XIV, 10332, 1–15. https://doi.org/10.1117/12.2270761

Ogawa, K., Endo, T., Tao, G., Yamagishi, Y., & Yasuoka, Y. (2005). Simulation of 3D urban landscape with textures and trees by remote sensing. Asian Association on Remote Sensing - 26th Asian Conference on Remote Sensing and 2nd Asian Space Conference, ACRS 2005, 1824–1828. Hanoi, Vietnam.

Pfeifer, N., & Briese, C. (2007). Geometrical aspects of airborne laser scanning and terrestrial laser scanning. IAPRS, XXXVI(Part3/W52), 311–319. https://doi.org/10.1007/978-3-319-74748-4_4

Pirasteh, S., Rashidi, P., Rastiveis, H., Huang, S., Zhu, Q., Liu, G., … Seydipour, E. (2019). Developing an algorithm for buildings extraction and determining changes from airborne LiDAR, and comparing with R-CNN method from drone images. Remote Sensing, 11(11), 1–18. https://doi.org/10.3390/rs11111272

Pirotti, F., Guarnieri, A., & Vettore, A. (2013). Ground filtering and vegetation mapping using multi-return terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 76, 56–63. https://doi.org/10.1016/j.isprsjprs.2012.08.003

Price, W. F., & Uren, J. (1989). PriceWFUrenJ1989_Laser_surveying. Van Nostrand Reinhold (International).

Priestnall, G., Jaafar, J., & Duncan, A. (2000). Extracting urban features from LiDAR digital surface models. Computers, Environment and Urban Systems, 24(2), 65–78. https://doi.org/10.1016/S0198-9715(99)00047-2

Pyörälä, J., Saarinen, N., Kankare, V., Coops, N. C., Liang, X., Wang, Y., … Vastaranta, M. (2019). Variability of wood properties using airborne and terrestrial laser scanning. Remote Sensing of Environment, 235(October), 1–14. https://doi.org/10.1016/j.rse.2019.111474

R Core Team. (2019). R 3.53 statistical software. Retrieved from https://cran.r-project.org/bin/windows/base/old/3.5.3/

Rybansky, M., Brenova, M., Cermak, J., Van Genderen, J., & Sivertun. (2016). Vegetation structure determination using LIDAR data and the forest growth parameters. IOP Conference Series: Earth and Environmental Science, 37(1), 1–7. https://doi.org/10.1088/1755-1315/37/1/012031

Saarinen, N., Kankare, V., Vastaranta, M., Luoma, V., Pyörälä, J., Tanhuanpää, T., … Hyyppä, J. (2017). Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees. ISPRS Journal of Photogrammetry and Remote Sensing, 123, 140–158. https://doi.org/10.1016/j.isprsjprs.2016.11.012

Saarinen, N., Vastaranta, M., Kankare, V., Tanhuanpää, T., Holopainen, M., Hyyppä, J., & Hyyppä, H. (2014). Urban-tree-attribute update using multisource single-tree inventory. Forests, 5(5), 1032–1052. https://doi.org/10.3390/f5051032

Šećerov, I. B., Savić, S. M., Milošević, D. D., Arsenović, D. M., Dolinaj, D. M., & Popov, S. B. (2019). Progressing urban climate research using a high-density monitoring network system. Environmental Monitoring and Assessment, 191(89), 1–19. https://doi.org/10.1007/s10661-019-7210-0

Šećerov, I., Savić, S., Milošević, D., Marković, V., & Bajšanski, I. (2015). Development of an automated urban climate monitoring system in Novi Sad (Serbia). Geographica Pannonica, 19(4), 174–183. https://doi.org/10.5937/GeoPan1504174S

Soudarissanane, S., Lindenbergh, R., Menenti, M., & Teunissen, P. (2011). Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS Journal of Photogrammetry and Remote Sensing, 66(4), 389–399. https://doi.org/10.1016/j.isprsjprs.2011.01.005

Szabó, S., Burai, P., Kovács, Z., Szabó, G., Kerényi, A., Fazekas, I., … Szabó, G. (2014). Testing algorithms for the identification of asbestos roofing based on hyperspectral data. Environmental Engineering and Management Journal, 13(11), 2875–2880. https://doi.org/10.30638/eemj.2014.323

Szabó, S., Enyedi, P., Horváth, M., Kovács, Z., Burai, P., Csoknyai, T., & Szabó, G. (2016). Automated registration of potential locations for solar energy production with Light Detection and Ranging (LiDAR) and small format photogrammetry. Journal of Cleaner Production, 112(2016), 3820–3829. https://doi.org/10.1016/j.jclepro.2015.07.117

Szczepański, J., Orczykowski, T., & Tokarczyk, T. (2012). Using 3D terrestial laser scanning (TLS) for surveying hydrotechnical structures when preparing flood hazard maps. Polish Journal of Environmental Studies, 21(5), 1405–1412.

Vosselman, G., & Maas, H.-G. (2010). Airborne and Terrestrial Laser Scanning (1st ed.). CRC Press.

Wehr, A., & Lohr, U. (1999). Airborne laser scanning - an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 68–82.

Wu, B., Yu, B., Yue, W., Shu, S., Tan, W., Hu, C., … Liu, H. (2013). A voxel-based method for automated identification and morphological parameters estimation of individual street trees from mobile laser scanning data. Remote Sensing, 5(2), 584–611. https://doi.org/10.3390/rs5020584

Xu, S., Oude Elberink, S., & Vosselman, G. (2012). Entities and features for classification of airborne laser scanning data in urban area. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1–4(September), 257–262. https://doi.org/10.5194/isprsannals-I-4-257-2012

Yang, B., Dong, Z., Liang, F., & Liu, Y. (2016). Automatic registration of large-scale urban scene point clouds based on semantic feature points. ISPRS Journal of Photogrammetry and Remote Sensing, 113, 43–58. https://doi.org/10.1016/j.isprsjprs.2015.12.005

Yang, H., Chen, W., Qian, T., Shen, D., & Wang, J. (2015). The extraction of vegetation points from LiDAR using 3D fractal dimension analyses. Remote Sensing, 7(8), 10815–10831. https://doi.org/10.3390/rs70810815

Zeileis, A., Kleiber, C., Walter, K., & Hornik, K. (2003). Testing and dating of structural changes in practice. Computational Statistics and Data Analysis, 44(1–2), 109–123. https://doi.org/10.1016/S0167-9473(03)00030-6

Zeileis, A., Leisch, F., Homik, K., & Kleiber, C. (2002). strucchange: An R Package for Testing for Structural Change. Journal of Statistical Software, 7(2), 1–38.

Zou, X., Cheng, M., Wang, C., Xia, Y., & Li, J. (2017). Tree Classification in Complex Forest Point Clouds Based on Deep Learning. IEEE Geoscience and Remote Sensing Letters, 14(12), 2360–2364. https://doi.org/10.1109/LGRS.2017.2764938

Published
2020/01/11
Section
Review Article