Spatial Variability of Soil Temperature in an Urban Area: a Case Study for a Medium-sized European City

Keywords: soil temperature, urban climate, Olomouc

Abstract


Even though soil temperature in urban environment influences a range of processes, it has been studied
rather sparsely in comparison with surface temperature or air temperature. Our research extends the
soil temperature observation in Olomouc (Czechia) and uses semi-stationary measurement to describe
detailed spatial variability of soil temperature in the area of a medium-sized Central European city. Differences in soil temperature 20 cm below grass-covered surface may exceed 3°C due to soil type, shadow cast by buildings and grass characteristics, which means that the representativeness of the data
on soil temperature from a meteorological station within a city may be limited. Further research and a
conceptual approach towards the study of soil temperature in urban landscape is needed.

References

Bedrna, Z., Fulajtár, E., Zrubec, F., & Juráni, B. (1989). Pôdne režimy. Veda, Bratislava.

Bokwa, A., Geletič, J., Lehnert, M., Žuvela-Aloise, M., Hollósi, B., Gál, T., Skarbit, N., Dobrovolný, P., Hajto, M.J., Kielar, R. & Walawender, J. P. (2019). Heat load assessment in Central European cities using an urban climate model and observational monitoring data. Energy and Buildings, 201, 53-69.

Buchan, G. D. (2001): Soil temperature regime. In: Smith, K. A., Mullins, C. E. [eds.]: Soil and Environmental analysis: Physical methods (pp. 539-594). New York, Marcel Dekker.

Čeplová, N., Kalusová, V., & Lososová, Z. (2017). Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landscape and Urban Planning, 159, 15-22.

Chmelová, R., & Šarapatka, B. (2002). Soil erosion by water: Contemporary research methods and their use. Geographica, 37, 23-30.

Christen, A., & Vogt, R. (2004). Energy and radiation balance of a central European city. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(11), 1395-1421.

Dobrovolný, P. (2013). The surface urban heat island in the city of Brno (Czech Republic) derived from land surface temperatures and selected reasons for its spatial variability. Theoretical and Applied Climatology, 112(1-2), 89-98.

Dolschak, K., Gartner, K., & Berger, T. W. (2015). A new approach to predict soil temperature under vegetated surfaces. Modeling Earth Systems and Environment, 1(4), 32.

Duray, B., Nagy, I., Andres, L., & Milošević, D. (2015). Soil pollution in the Hungarian-Romanian border region (Valley of Körös-Cris rivers). Carpathian Journal of Earth and Environmental Sciences, 10(3), 207–216.

Feldhake, C. M., & Boyer, D. G. (1986). Effect of soil temperature on evapotranspiration by C3 and C4 grasses. Agricultural and Forest Meteorology, 37(4), 309-318.

Feranec, J., Kopecká, M., Szatmari, D., Holec, J., Šťastný, P., Pazúr, R., & Bobáľová, H. (2019). A review of studies involving the effect of land cover and land use on the urban heat island phenomenon, assessed by means of the MUKLIMO model. Geografie, 124, 83-101.

Fricke, C., Pongrácz, R., Gál, T., Savić, S., & Unger, J. (2020). Using local climate zones to compare remotely sensed surface temperatures in temperate cities and hot desert cities. Moravian Geographical Reports, 28(1), 48-60.

Geletič, J., Lehnert, M., Savić, S., & Milošević, D. (2019). Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Building and Environment, 156, 21-32.

Geletič, J., & Vysoudil, M. (2012): Analysis of surface temperatures in urban and suburban landscapes from satellite thermal images: A case study of olomouc and its environs, Czech Republic [Analýza povrchové teploty v městské a příměstské krajině na základě analýzy satelitních termálních snímků, Olomouc a okolí (Česká Republika)]. Moravian Geographical Reports, 20 (1), pp. 2-15.

Gémes, O., Tobak, Z., & Van Leeuwen, B. (2016). Satellite based analysis of surface urban heat island intensity. Journal of Environmental Geography, 9(1-2), 23-30.

Gens, A. (2010). Soil–environment interactions in geotechnical engineering. Géotechnique, 60(1), 3-74.

Harman, I. N. (2003): The energy balance of urban areas. Dissertation. Reading: University of Reading.

Jenny, H. (1994): Factors of soil formation: a system of quantitative pedology. New York: Dover Publications, Inc.

Kang, S., Kim, S., Oh, S., & Lee, D. (2000). Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. Forest Ecology and Management, 136(1-3), 173-184.

Kopp, J. & Raška P. (2017). Ekohydrologický management mikrostruktur v městské krajiny. Západočeská univerzita v Plzni, Plzeň.

Lehnert, M. (2013a). Vliv vybraných (geo)faktorů na režim teploty půdy v městské a příměstské krajině Olomouce. Dissertation. Ostravská univerzita v Ostravě, Ostrava.

Lehnert, M. (2013b). The soil temperature regime in the urban and suburban landscapes of Olomouc, Czech Republic. Moravian Geographical Reports, 21(3), 27-36.

Lehnert, M. (2014). Factors affecting soil temperature as limits of spatial interpretation and simulation of soil temperature. Acta Universitatis Palackianae Olomucensis–Geographica, 45(1), 5-21.

Lehnert, M., Geletič, J., Dobrovolný, P., & Jurek, M. (2018). Temperature differences among local climate zones established by mobile measurements in two central European cities. Climate Research, 75(1), 53-64.

Lehnert, M., Tokar, V., Jurek, M., & Geletič, J. (2020). Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. International Journal of Biometeorology, 1-13. https://doi.org/10.1007/s00484-020-02010-y

Lehnert, M., Vysoudil, M., & Kladivo, P. (2015). Semi-stationary measurement as a tool to refine understanding of the soil temperature spatial variability. International Agrophysics, 29(4), 449-457.

Lokoshchenko, M. A., & Korneva, I.A. (2015). Underground urban heat island below Moscow city. Urban Climate, 13, 1–13.

Low, J. E., Loveridge, F. A., & Powrie, W. (2013). Measuring soil thermal properties for use in energy foundation design. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France (pp. 2-6).

Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K.F., Geletič, J., Giersch, S., & Russo, E. (2020). Overview of the PALM model system 6.0. Geoscientific Model Development, 13, 1335-1372.

Masson, V., Heldens, W., Bocher, E., Bonhomme, M., Bucher, B., Burmeister, C., de Munck, C., Esch, T., Hidalgo, J., Kanani-Sühring, F. & Kwok, Y. T. (2020). City-descriptive input data for urban climate models: Model requirements, data sources and challenges. Urban Climate, 31, 100536.

Milošević, D., Nagy, I., & Stojanović, V. (2014). Soils in the cities: State, problems and remediation techniques. Researches Reviews of the Department of Geography, Tourism and Hotel Management, 43(1), 1–16.

Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522-538.

Probert, R. J. (2000): The role of temperature in the regulation of seed dormancy and germination. In: Fenner, M. [ed.]: Seeds: the ecology of regeneration in plant communities (pp. 261-292). Wallingford, CABI Publishing.

Resler, J., Eben, K., Geletič, J., Krč, P., Rosecký, M., Sühring, M., Belda, M., Fuka, V., Halenka, T., Huszár, P., & Karlický, J. (2020). Validation of the PALM model system 6.0 in real urban environment; case study of Prague-Dejvice, Czech Republic. Geoscientific Model Development Discussions, 1-57.

Schwarz, N., Schlink, U., Franck, U., & Großmann, K. (2012). Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecological Indicators, 18, 693-704.

Shein, E. V., Bannikov, M. V., Troshina, O. V., & Churkina, O. A. (2009): Temperature field of complex soilscapes (by the example of the Vladimir opolie region). Eurasian Soil Science, 42(2): 129–136.

Sievers, U., Forkel, R., & Zdunkowski, W. (1983). Transport equations for heat and moisture in the soil and their application to boundary layer problems. Contributions to Atmospheric Physics, 56, 58-83.

Sobocká, J. (2010). Specifics of urban soils (Technosols) survey and mapping. 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1-6 August 2010, Brisbane, Australia (pp. 56-59).

Sobocká, J., Saksa, M., Feranec, J., Szatmári, D., Holec, J., Bobáľová, H., & Rášová, A. (2020). Mapping of urban environmentally sensitive areas in Bratislava city. Journal of Soils and Sediments, https://doi.org/10.1007/s11368-020-02682-4.

Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900.

Šulgin, A. M. (1972). Klimat počvy i jego regulirovanije. Leningrad, Gidrometeoizdat.

Tang, C. S., Shi, B., Gao, L., Daniels, J. L., Jiang, H. T., & Liu, C. (2011). Urbanization effect on soil temperature in Nanjing, China. Energy and Buildings, 43(11), 3090-3098.

Vysoudil, M., Geletič, J., Lehnert, M., Lipina, P., Pavelková Chmelová, R., & Řepka, M. (2012). Podnebí Olomouce. Univerzita Palackého v Olomouci.

Zheng, D., Hunt, E. R., Running, S. W. (1993): A daily soil temperature model based on air temperature and precipitation for continental applications. Climate Research, 2(3): 183–191.

Published
2021/03/31
Section
Original Research