Microclimatic Behavior of Sustainable Urban Schemes Proposed for Hillside Areas Versus Existing Neighborhoods in the Metropolitan Area of Mendoza, Argentina

Keywords: Sustainable Urban Development, Hillside, Urban Land, Microclimatic Simulation, Mendoza, ENVI-met

Abstract


The Metropolitan Area of Mendoza (MMA), Argentina, has extended towards peripheral hillside areas without considering the environmental impact of this action. This growth has continued the urban model of flatland development, causing changes in the ecosystem and an increase in outdoor air temperature. This work proposes and evaluates urban schemes that incorporate design criteria with the objective of preserving environmental characteristics and mitigating the effect of urbanization on the microclimate. The proposed grid layouts, located in three predominant slopes, were linear organic and Cul-de-Sac. Methodologically, the microclimatic response of the proposed schemes was evaluated by applying ENVI-met software simulation. The results show that urban growth is possible when carefully considering environmental limitations which grant maximum air temperature reductions of up to 2 °C.

References

Abraham, E., Roig, F., & Salomón, M. (2005). Planificación y gestión del piedemonte al oeste de la Ciudad de Mendoza. Un asunto pendiente [Planning and management of the hillside west of the city of Mendoza. An unfinished business]. IADIZA, CONICET. Argentina. (in Spanish).

Akbari, H., Menon, S., & Rosenfeld, A. (2009) Global cooling: increasing world-wide urban albedos to offset CO2. Climatic Change, 94, 275 – 286. https://doi.org/10.1007/s10584-008-9515-9.

Alchapar, N., & Correa, E. (2015). Comparison of the performance of different facade materials for reducing building cooling needs. Eco-Efficient Materials for Mitigating Building Cooling Needs Design, Properties and Applications. 155-194. https://doi.org/10.1016/B978-1-78242-380-5.00006-6

Alchapar, N., & Correa, E. (2016). Pautas de diseño para disminuir las temperaturas urbanas en regiones con alta productividad solar. Parámetros morfológicos y materiales.  [Design guidelines to reduce urban temperatures in regions with high solar productivity. Morphological and material parameters]. Hábitat Sustentable, 6(1), 84-95. http://revistas.ubiobio.cl/index.php/RHS/article/view/2366 (in Spanish with English summary).

Alchapar, N. (2014). Materiales de la envolvente urbana. Valoración de su aptitud para mitigar la isla de calor en ciudades de zonas áridas [Materials of the urban envelope Assessment of its aptitude to mitigate the heat island in cities of arid zones]. Argentina: National University of Salta, Salta. (in Spanish with English summary).

Alchapar, N., Pezzuto, C., Correa, E., & Labaki, L. (2016). The impact of different cooling strategies on urban air temperatures: the cases of Campinas, Brazil and Mendoza, Argentina. Theoretical and Applied Climatology, 130, 35–50. https://doi.org/10.1007/s00704-016-1851-5

Ali-Toudert, F., & Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2), 94–108. https://doi.org/10.1016/j.buildenv.2005.01.013

Allegrini, J., Dorer, V., & Carmeliet, J. (2015). Influence of morphologies on the microclimate in urban neighbourhoods. Journal of Wind Engineering and Industrial Aerodynamics, 144, 108-117. https://doi.org/10.1016/j.jweia.2015.03.024

Boutet, M.L., Hernández A.L., & Jacobo, G.J. (2016). Thermo – lighting optimization proposal for school buildings in subtropical hot – humid climates: Monitoring and computer simulation on autumn period. Energy and Buildings, 128, 785-797. https://doi.org/10.1016/j.enbuild.2016.07.028

Bruse, M., & Fleer, H. (1998a). Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software, 13(3–4), 373-384. https://doi.org/10.1016/S1364-8152(98)00042-5

Bruse, M. (1999). The influences of local environmental design on microclimate. Bochum, Germany: University of Bochum.

Bruse, M. (2009) Stadtlandschaft im Klimawandel - Zu den Grundlagen des städtischen Mikroklimas. [Urban Landscape in Climate Change - On the Fundamentals of the Urban Microclimate]. In: H.D. Collinet, & F. Pesch (Eds.), Stadtund Landschaft. Essen: Klartext Verlag. (in German with English summary). 

Cantón, M.A., Cortegoso, J.L., & De Rosa, C. (2000). Environmental and energy impact of the urban forest in arid zone cities. Architectural Science Review, 44(1), 3-16. https://doi.org/10.1080/00038628.2001.9697448

Cantón, M.A., Cortegoso, J.L., & de Rosa, C. (1994). Solar permeability of urban trees in cities of western Argentina. Energy and Buildings, 20(3), 219-230. https://doi.org/10.1016/0378-7788(94)90025-6

Castells, D. (2017). The challenges of a Crowded Planet. The observer. RBA Editors.

Castillo, A.L., Correa, E.N., & Cantón, M.A. (2019). Geomorfología y forma urbana. Comportamiento térmico de distintas tramas en áreas de piedemonte: el caso de Mendoza, Argentina. [Geomorphology and urban form. Thermal behavior of different frames in hillside areas: the case of Mendoza, Argentina]. EURE Magazine - Journal of Urban Regional Studies, 45, 136. http://dx.doi.org/10.4067/S0250-71612019000300183. (in Spanish with English summary).

Castillo, A.L., Correa, E.N., & Cantón, M.A. (2017). Regulación urbanística de áreas de piedemonte en ciudades latinoamericanas. Análisis crítico de la normativa internacional y el marco regulatorio de la ciudad de Mendoza. [Urban regulation of hillside in Latin American cities. Critical analysis of international regulations and the regulatory framework of the City of Mendoza, Argentina]. ACE: Architecture, City and Environment, 12, 39-70. https://doi.org 10.5821/ace.12.35.476. (in Spanish with English summary).

Castillo, A. L., Sosa, M. B., Correa, E. N., & Cantón, M. A. (2018). Comportamiento y confort térmico exterior de canales viales urbanos insertos en diversas tramas y geomorfologías de Mendoza. [The behavior and outdoor thermal comfort of urban canyons in different weft and geomorphologies of Mendoza, Argentina]. Revista hábitat sustentable8(2), 116-129. https://doi.org/10.22320/07190700.2018.08.02.09 (in Spanish with English summary).

Correa E.N., Ruiz, M.A., Canton, M., & Lesino, G. (2012). Thermal comfort in forested urban canyons of low building density. An assessment for the city of Mendoza, Argentina. Building and Environment,  58, 219-230. https://doi.org/10.1016/j.buildenv.2012.06.007

Correa, E.N. (2006). Isla de Calor Urbana. El caso del Área Metropolitana de Mendoza. [Urban Heat Island. The case of the metropolitan area of Mendoza]. Salta: National University of Salta. (in Spanish with English summary).

Correa, E.N., De Rosa, C., & Lesino, G. (2006). Isla de calor urbana. Distribución espacio-temporal de temperaturas dentro del Área Metropolitana de Mendoza. [Urban heat island. Spatial-temporal distribution of temperatures within the metropolitan area of Mendoza]. Avances en Energías Renovables y Medio Ambiente (AVERMA), 10, 121-128. http://sedici.unlp.edu.ar/handle/10915/88447 (in Spanish with English summary).

Da Cunha, J. M. P., & Vignoli, J. R. (2009). Crecimiento urbano y movilidad en América Latina. [Urban growth and mobility in Latin America]. Revista Latinoamericana de Población3(4), 27-64. http://dx.doi.org/10.31406/relap2009.v3.i1.n4-5.1 (in Spanish with English summary).

Declet-Barreto, J., Brazel, A. J., Martin, C. A., Chow, W. T., & Harlan, S. L. (2013). Creating the park cool island in an inner-city neighborhood: heat mitigation strategy for Phoenix, AZ. Urban Ecosystems16(3), 617-635. https://doi.org/10.1007/s11252-012-0278-8

Doulos, L., Santamouris, M., & Livada, I. (2004). Passive cooling of outdoor urban spaces. The role of materials. Solar energy, 77(2), 231-249. https://doi.org/10.1016/j.solener.2004.04.005

Dirección General de Catastro Mendoza. [General Directorate of Cadastre]. (2018). Mendoza Government. Argentina.

Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: the role of the green infrastructure. Built environment, 33(1), 115-133. DOI: 10.2148/benv.33.1.115

Gómez, V., Faggi, A., & Martínez Carretero, E. (2017). Estudios preliminaries acerca del Impacto de la urbanización del Piedemonte Mendocino sobre la Avifauna silvestre. [Preliminary studies on the impact of the urbanization of the piemonte of Mendoza on the wild avifauna]. Workshop de la Red Iberoamericana de Observación Territorial. (in Spanish).

Haller, A. (2017). Los impactos del crecimiento urbano en los campesinos andinos. Un estudio de percepción en la zona rural-urbana de Huancayo, Perú. [The impacts of urban growth on Andean farmers. A perception study in the rural-urban area of Huancayo, Peru]. Espacio y Desarrollo, 29, 37-56. https://doi.org/10.18800/espacioydesarrollo.201701.002

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15(3), 259–263. doi:10.1127/0941-2948/2006/0130. (in English with German summary).

Kuo-Tsang, H., y Yi-Jhen, L. (2017). Impact of street canyon typology on building’s peak cooling energy demand. Energy and Buildings, 154, 448-464. doi: 10.1016/j.enbuild.2017.08.054

Ramakreshnan, L., Aghamohammadi, N., Fong, C.S., Ghaffarianhoseini, A., Ghaffarianhoseini, A., Wong, L.P., Hassan, N., & Sulaiman, N.M. (2018). A critical review of urban heat island phenomenon in the context of greater Kuala Lumpur, Malaysia. Sustainable Cities and Society, 39, 99-113, https://doi.org/10.1016/j.scs.2018.02.005.

Mesa, A., & Giusso, C. (2014). La urbanización del Piedemonte Andino del Área Metropolitana de Mendoza, Argentina: vulnerabilidad y segmentación social como ejes del conflict. [The urban development at the Andean piedmont in the Metropolitan area of Mendoza, Argentina. Vulnerability and social segmentation as axes of conflicto]. RIURB Revista Iberoamericana de Urbanismo, 11. http://sedici.unlp.edu.ar/handle/10915/101633 (in Spanish with English summary).

Rodríguez, M. L. (2008). Riesgo en el piedemonte del Gran Mendoza por avance urbano. Argentina. [Risk in the hillsides of Great Mendoza due to urban advance. Argentina]. Tiempo y espacio, (21), 47-57. (in Spanish with English summary).

Maggiotto, G., Miani. A., Rizzo, E., Castellone, M.D., & Piscitelli P. (2021). Heat waves and adaptation strategies in a Mediterranean urban context. Environmental Research, 197, 111066. https://doi.org/10.1016/j.envres.2021.111066

Maleki, A., & Mahdavi, A. (2016). Evaluation of urban heat islands mitigation strategies using 3dimentional urban micro-climate model ENVI-met. Asian Journal of Civil Engineering (BHRC), 17(3), 357–371.

Mendoza Aero Observations SAME. Francisco Gabrielli Airport (2014) Station number: 87418. http://www.wunderground. com/history/airport/SAME/

Merlier, L., Frayssinet, L., Johannes, K., & Kuznik, F. (2019). On the impact of local microclimate on building performance simulation. Part II: Effect of external conditions on the dynamic thermal behavior of buildings. Building Simulation, 12(5), 747–757. https://doi.org/10.1007/s12273-019-0508-6.

Middel, A., Chhetri, N., & Quay, R. (2015). Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban Forestry & Urban Greening, 14(1), 178-186. https://doi.org/10.1016/j. ufug.2014.09.010

Middel, A., Häb, K., Brazel, A.J., Martin, C.A., & Guhathakurta, S. (2014). Impact of urban form and design on midafternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122, 16-28. https://doi. org/10.1016/j.landurbplan.2013.11.004.

Mirzaei, P., & Haghighat, F. (2010). Approaches to study Urban Heat Island, Abilities and limitations. Building and Environment; 45-10, 2192-2201.  http://dx.doi.org/10.1016/j.buildenv.2010.04.001

Morille, B., Lauzet, N., & Musy, M. (2015). SOLENE-microclimate: A Tool to Evaluate Envelopes Efficiency on Energy Consumption at District Scale. Energy Procedia, 78,1165-1170, https://doi.org/10.1016/j.egypro.2015.11.088.

Moschella, P. (2017). Variación del paisaje para la gestion sostebible del territorio. [Variation of the landscape for the sustainable management of the territory]. In J. Stillemans, J. Canziani, M. Vilela & P. Dam Mazzi (Eds.), Transversal: Integration actions in the Peruvian territory (pp. 333-346). Lima: Pontifical Catholic University of Peru.

Oke, T.R. (2004) Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites IOM Report No. 81, WMO/TD No. 1250, WMO, Geneva.

Palme, M., Inostroza, L., Villacreses, G., Lobato-Cordero, A., & Carrasco, C. (2017).  From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect. Energy and Buildings, 145,107-120. https://www.sciencedirect.com/science/article/abs/pii/S0378778817311027

Perini, K., & Magliocco, A. (2014). Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban Forestry & Urban Greening, 13, 495–506. http://dx.doi.org/10.1016/j.ufug.2014.03.003

Perini, K., Chokhachian, A., Dong, S., & Auer, T. (2017). Modeling and simulating urban outdoor comfort: Coupling ENVI-Met and TRNSYS by grasshopper, Energy and Buildings,152, 373-384. https://doi.org/10.1016/j.enbuild.2017.07.061.

Crank, P. J., Sailor, D. J., Ban-Weiss, G., & Taleghani, M. (2018). Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban Climate, 26, 188-197. https://doi.org/10.1016/j.uclim.2018.09.002

Ruiz, M.A., & Correa, E.N. (2015). Influencia de esquemas urbano-forestales sobre el consuemo energético residencial en una “ciudad oasis” de zona árida. [Influence of urban-forest schemes on residential energy consumption in an “oasis city” of arid zone]. Avances en Energías Renovables y Medio Ambiente, 19, 01.23-01.34. (in Spanish with English summary).

Santamouris, M. (2016). Cooling the buildings – past, present and future. Energy and Buildings, 128, 617-638. https://doi.org/10.1016/j.enbuild.2016.07.034

Santamouris, M., Ding, L., Fiorito, F., Oldfield, P., Osmond, P., Paolini, R., Prasad, D. & Synnefa, A.J.S.E. (2017). Passive and active cooling for the outdoor built environment–Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Solar Energy, 154, 14-33. https://doi.org/10.1016/j.solener.2016.12.006

Sosa, M.B. (2017). Estrategias de mitigación de la isla de calor, sustentabilidad ambiental y eficiencia energética de perfiles urbanos de baja densidad en zonas áridas. [Heat island mitigation strategies. Environmental sustainability and energy efficiency of low-density urban profiles in arid zones]. Salta, Argentina: National University of Salta. (in Spanish with English summary).

Sosa, M.B., Correa, E.N. & Cantón, M.Al. (2018). Neighborhood designs for low-density social housing energy efficiency: Case study of an arid city in Argentina. Energy & Buildings, 168. 137–146. https://doi.org/10.1016/j.enbuild.2018.03.006

Stocco, S. (2016). Impacto de la morfología y materialidad de las plazas en las condiciones energético-ambientales en ciudades de clima árido. [Impact of the morphology and materiality of squares on the energy-environmental quality of cities located in arid zones]. Mendoza: Universidad Tecnológica Nacional. (in Spanish with English summary).

Stocco, S., Cantón, M.A., & Correa, E. (2020) Evaluation of design schemes for urban squares in arid climate cities, Mendoza, Argentina. Building Simulation, 14, 763–777. https://doi.org/10.1007/s12273-020-0691-5

Synnefa, A., Dandou, A., Santamouris, M., Tombrou, M., & Soulakellis, N. (2008). On the Use of Cool Materials as a Heat Island Mitigation Strategy. Journal of Applied Meteorology and Climatology, 47(11), 2846-2856.  DOI: 10.1175/2008JAMC1830.1

Synnefa, A., Saliari, M., & Santamouris M. (2012). Experimental and numerical assessment of the impact of increased roof reflectance on a school building in Athens. Energy and Buildings, 55, 7-15. https://doi.org/10.1016/j.enbuild.2012.01.044

Tsoka, S., Tsikaloudaki, A., & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55–76. https://doi.org/10.1016/j.scs.2018.08.009

Tumini, I., & Higueras, E. (2012). Alcance y limitaciones de las herramientas de simulación para el estudio del microclima urbano. [Scope and limitations of the simulation tools for the study of the urban microclimate]. DYNA Energía y Sostenibilidad, 2, 1-17. DOI: http://dx.doi.org/10.6036/ES6921

Tumini, I., & Pérez Fargallo, A. (2015). Aplicación de los sistemas adaptativos para la evaluación del confort térmico en espacios abiertos, en Madrid. [Application of adaptive systems for the evaluation of thermal comfort in open spaces, in Madrid]. Hábitat Sustentable, 5(2), 57-67.  http://revistas.ubiobio.cl/index.php/RHS/article/view/1933. (in Spanish with English summary).

UN-Habitat World Cities Report (2016). Urbanization and development: emerging futures.

Wang, Y., & Akbari, H. (2016). Analysis of urban heat island phenomenon and mitigation solutions evaluation for Montreal. Sustainable Cities and Society, 26, 438-446. https://doi.org/10.1016/j.scs.2016.04.015

Weather Underground (2017). Retrieved from https://espanol. wunderground.com/

Yamamoto, Y. (2006). Measures to mitigate urban heat islands. Science and Technology Trends. Quarterly Review, 18(1), 65- 83. https://www.coolrooftoolkit.org/wp-content/uploads/2012/04/Measures-to-Mitigate-UHI-Yamamoto.pdf

Yang, X., Zhao, L., Bruse, M., y Meng, Q. (2012). An integrated simulation method for building energy performance assessment in urban environments. Energy and Building 54, 243-251. doi: 10.1016/j.enbuild.2012.07.042

Yucekaya, M., & Uslu, C. (2020). An analytical model proposal to design urban open spaces in balance with climate: A case study of Gaziantep. Land Use Policy, 95(4),104564. 10.1016/j.landusepol.2020.104564

Zhou, B., Rybski, D., & Kropp, J. P. (2017). The role of city size and urban form in the surface urban heat island. Sci Reports, 7, 4791. https://doi.org/10.1038/s41598-017-04242-

Zinzi, M., & Agnoli, S. (2012). Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy and Buildings, 55, 66-76. https://doi.org/10.1016/j.enbuild.2011.09.024

Zinzi, M., Carnielo, E., & Agnolic, S. (2012). Characterization and assessment of cool coloured solar protection devices for Mediterranean residential buildings application. Energy and Buildings, 50, 111-119. https://doi.org/10.1016/j.enbuild.2012.03.031

Published
2021/12/30
Section
Original Research