Influence of Convectively Coupled Equatorial Kelvin Waves on March-May Precipitation over East Africa

  • Phillip Okello Ochieng Kenya Meteorological Department
  • Guirong Tan
  • Victor Ongoma
  • Isaiah Nyandega
Keywords: Convectively Coupled Equatorial Kelvin Waves, Inter-Tropical Convergence Zone, Singular Value Decomposition.

Abstract


Convectively coupled equatorial Kelvin waves (CCEKWs) are those types of equatorially trapped disturbances that propagate eastward and are among the most common intra-seasonal oscillations the tropics. There exists two-way feedback between the inter-tropical convergence zone (ITCZ) and these equatorially trapped disturbances. Outgoing Longwave Radiation (OLR) was utilized as a proxy for deep convection. For CCKWs, the modes are located over the West Atlantic, equatorial West Africa, and the Indian Ocean. The influence of other circulations and climate dynamics is studied for finding other drivers of climate within East Africa. The results show a positive relationship between Indian and Atlantic Oceans Sea Surface Temperatures and March-May rainfall over equatorial East Africa. This influence is driven by the walker circulation and anomalous moisture influx enhanced by winds. Composite analysis reveals strong lower-tropospheric westerlies during the active phase of the CCKWs activities over Equatorial East Africa. The winds are in the opposite direction with the upper-tropospheric winds, which are easterlies. Singular Value Decomposition shows a strong coupling interaction between rainfall over equatorial East Africa and CCKWs. This study concludes that Kelvin waves are not the main factors that influence rainfall during the rainy season. Previous studies show that the main influencing factors are ITCZ, ENSO, and tropical anticyclones that sandwich the African continent. However, CCKWs are a significant factor during the dry seasons.

 

References

Adler, R. F., Sapiano, M. R. P., Huffman, G. J., Wang, J. J., Gu, G., Bolvin, D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., & Shin, D. Bin. (2018). The Global Precipitation Climatology Project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation. Atmosphere, 9(4). https://doi.org/10.3390/atmos9040138

Barnston, A. G., & Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly weather review, 115(6), 1083-1126. https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2

Biasutti, M., Battisti, D. S., & Sarachik, E. S. (2003). The annual cycle over the tropical Atlantic, south America, and Africa. Journal of Climate, 16(15), 2491–2508. https://doi.org/10.1175/1520-0442(2003)016<2491:TACOTT>2.0.CO;2

Cattani, E., Merino, A., Guijarro, J. A., & Levizzani, V. (2018). East Africa Rainfall trends and variability 1983-2015 using three long-term satellite products. Remote Sensing, 10(6), 1–26. https://doi.org/10.3390/rs10060931

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276. https://doi.org/10.1207/s15327906mbr0102_10

Chiang, J. C. H., Kushnir, Y., & Zebiak, S. E. (2000). Interdecadal changes in castern Pacific ITCZ variability and its influence on the Atlantic ITCZ. Geophysical Research Letters, 27(22), 3687–3690. https://doi.org/10.1029/1999GL011268

Cho, H. K., Bowman, K. P., & North, G. R. (2004). Equatorial waves including the Madden-Julian oscillation in TRMM rainfall and OLR data. Journal of Climate, 17(22), 4387–4406. https://doi.org/10.1175/3215.1

Convection-2-15Day.Pdf. (n.d.).

Dias, J., & Pauluis, O. (2009). Convectively coupled waves propagating along an equatorial ITCZ. Journal of the Atmospheric Sciences, 66(8), 2237–2255. https://doi.org/10.1175/2009JAS3020.1

Emanuel, K. A., David Neelin, J., & Bretherton, C. S. (1994). On large‐scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society, 120(519), 1111-1143. https://doi.org/10.1256/smsqj.51901

Finney, D. L., Marsham, J. H., Walker, D. P., Birch, C. E., Woodhams, B. J., Jackson, L. S., & Hardy, S. (2020). The effect of westerlies on East African rainfall and the associated role of tropical cyclones and the Madden–Julian Oscillation. Quarterly Journal of the Royal Meteorological Society, 146(727), 647–664. https://doi.org/10.1002/qj.3698

Fu, R., Dickinson, R. E., Chen, M., & Wang, H. (2001). How do tropical sea surface temperatures influence the seasonal distribution of precipitation in the equatorial Amazon? Journal of Climate, 14(20), 4003–4026. https://doi.org/10.1175/1520-0442(2001)014<4003:HDTSST>2.0.CO;2

Gruber, A., & Krueger, A. F. (1984). The status of the NOAA outgoing longwave radiation data set. Bulletin - American Meteorological Society, 65(9), 958–962. https://doi.org/10.1175/1520-0477(1984)065<0958:TSOTNO>2.0.CO;2

Gu, G., & Zhang, C. (2001). A spectrum analysis of synoptic-scale disturbances in the ITCZ. Journal of Climate, 14(12), 2725–2739. https://doi.org/10.1175/1520-0442(2001)014<2725:ASAOSS>2.0.CO;2

Hayashi, Y. (1982). Space-Time Spectral Analysis and its Applications to Atmospheric Waves. Journal of the Meteorological Society of Japan. Ser. II, 60(1), 156–171. https://doi.org/10.2151/jmsj1965.60.1_156

Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., Smith, T. M., Thorne, P. W., Woodruff, S. D., & Zhang, H. M. (2015). Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. Journal of Climate, 28(3), 911–930. https://doi.org/10.1175/JCLI-D-14-00006.1

Huffman, G. J., Adler, R. F., Arkin, P., Chang, A., Ferraro, R., Gruber, A., Janowiak, J., McNab, A., Rudolf, B., & Schneider, U. (1997). The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bulletin of the American Meteorological Society, 78(1), 5–20. https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J. & Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American meteorological Society, 77(3), 437-472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Li, T., & Philander, S. G. H. (1997). On the seasonal cycle of the equatorial Atlantic Ocean. Journal of Climate, 10(4), 813–817. https://doi.org/10.1175/1520-0442(1997)010<0813:OTSCOT>2.0.CO;2

Lindzen, R. D. (1967). Planetary Waves on Beta-Planes. Monthly Weather Review, 95(7), 441–451. https://doi.org/10.1175/1520-0493(1967)095<0441:pwobp>2.3.co;2

MacRitchie, K., & Roundy, P. E. (2012). Potential vorticity accumulation following atmospheric Kelvin waves in the active convective region of the MJO. Journal of the Atmospheric Sciences, 69(3), 908–914. https://doi.org/10.1175/JAS-D-11-0231.1

Matsuno, T. (1966). Quasi-Geostrophic Motions in the Equatorial Area. Journal of the Meteorological Society of Japan. Ser. II, 44(1), 25–43. https://doi.org/10.2151/jmsj1965.44.1_25

Mekonnen, A., Thorncroft, C. D., & Aiyyer, A. R. (2006). Analysis of convection and its association with African easterly waves. Journal of Climate, 19(20), 5405–5421. https://doi.org/10.1175/JCLI3920.1

Mekonnen, A., Thorncroft, C. D., Aiyyer, A. R., & Kiladis, G. N. (2008). Convectively coupled Kelvin waves over tropical Africa during the boreal summer: Structure and variability. Journal of Climate, 21(24), 6649–6667. https://doi.org/10.1175/2008JCLI2008.1

Mutai, C. C., & Ward, M. N. (2000). East African rainfall and the tropical circulation/convection on intraseasonal to interannual timescales. Journal of Climate, 13(22), 3915–3939. https://doi.org/10.1175/1520-0442(2000)013<3915:EARATT>2.0.CO;2

Ongoma, V., & Chen, H. (2017). Temporal and spatial variability of temperature and precipitation over East Africa from 1951 to 2010. Meteorology and Atmospheric Physics, 129(2), 131–144. https://doi.org/10.1007/s00703-016-0462-0

Pohl, B., & Camberlin, P. (2006a). Influence of the Madden-Julian Oscillation on East African rainfall. I: Intraseasonal variability and regional dependency. Quarterly Journal of the Royal Meteorological Society, 132(621), 2521–2539. https://doi.org/10.1256/qj.05.104

Pohl, B., & Camberlin, P. (2006b). Influence of the Madden-Julian Oscillation on East African rainfall. II. March-May season extremes and interannual variability. Quarterly Journal of the Royal Meteorological Society, 132(621), 2541–2558. https://doi.org/10.1256/qj.05.223

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M., & Potter, G. L. (2002). Ncep–doe amip-ii reanalysis (r-2). Bulletin of the American Meteorological Society, 83(11), 1631-1644. https://doi.org/10.1175/BAMS-83-11

Roundy, P. E. (2008). Analysis of convectively coupled Kelvin waves in the Indian ocean MJO. Journal of the Atmospheric Sciences, 65(4), 1342–1359. https://doi.org/10.1175/2007JAS2345.1

Roundy, P. E., & Frank, W. M. (2004). A climatology of waves in the equatorial region. Journal of the Atmospheric Sciences, 61(17), 2105–2132. https://doi.org/10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2

Schreck, C. J., & Molinari, J. (2011). Tropical cyclogenesis associated with Kelvin waves and the Madden-Julian oscillation. Monthly Weather Review, 139(9), 2723–2734. https://doi.org/10.1175/MWR-D-10-05060.1

Straub, K. H., & Kiladis, G. N. (2002). Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. Journal of the Atmospheric Sciences, 59(1), 30–53. https://doi.org/10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2

Ventrice, M. J., Thorncroft, C. D., & Schreck, C. J. (2012). Impacts of convectively coupled kelvinwaves on environmental conditions for Atlantic tropical cyclogenesis. Monthly Weather Review, 140(7), 2198–2214. https://doi.org/10.1175/MWR-D-11-00305.1

Walker, D. P., Marsham, J. H., Birch, C. E., Scaife, A. A., & Finney, D. L. (2020). Common Mechanism for Interannual and Decadal Variability in the East African Long Rains. Geophysical Research Letters, 47(22). https://doi.org/10.1029/2020GL089182

Ward, M. N. (1998). Diagnosis and short-lead time prediction of summer rainfall in tropical North Africa at interannual and multidecadal timescales. Journal of Climate, 11(12), 3167–3191. https://doi.org/10.1175/1520-0442(1998)011<3167:DASLTP>2.0.CO;2

Wheeler, M. C., & Hendon, H. H. (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132(8), 1917–1932. https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2

Wheeler, M., & Kiladis, G. N. (1999). Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber-Frequency Domain. Journal of the Atmospheric Sciences, 56(3), 374–399. https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2

Wheeler, M., Kiladis, G. N., & Webster, P. J. (2000). Large-scale dynamical fields associated with convectively coupled equatorial waves. Journal of the Atmospheric Sciences, 57(5), 613–640. https://doi.org/10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2

Zhou, L., Wang, S., Du, M., Chen, Q., He, C., Zhang, J., Zhu, Y., & Gong, Y. (2021). The influence of ENSO and MJO on drought in different ecological geographic regions in China. Remote Sensing, 13(5), 1–19. https://doi.org/10.3390/rs13050875

Published
2021/03/31
Section
Original Research