Spatio-temporal changes in the heatwaves and coldwaves in Spain (1950-2018): influence of the East Atlantic pattern

Keywords: Iberian Peninsula; cluster; advection; indices; teleconnection; East Atlantic

Abstract


The Iberian Peninsula has a complex orography, which determines an important altitudinal gradient and alternation of valleys and mountains, and periodic cold/warm advections air. In the present investigation the evolution of the characteristics of heatwaves (HWs) and coldwaves (CWs) (number of events, frequency, duration, magnitude, and amplitude) was analyzed. A total of 28 homogeneous-period weather stations (1950-2018), grouped into six regions (cluster). After submitting the meteorological series to a process of homogenization and data quality control, various ET-SCI indices were estimated in order to obtain evolution trends in each climatic region. In all cases, there was an increase, often significant, in the recurrence of HW events (0.3 / 10 yrs) as well as a decrease in CW events (-0.2 / 10 yrs). In addition, the evolution of the above indices and anomalies was correlated with the evolution of the global index of the East Atlantic (EAi).

References

Acquaotta, F., & Fratianni, S. (2014). The importance of the quality and reliability of the historical time series for the study of climate change. Revista Brasileira de Climatologia 14, 20-38.

Alexander, L. (2010). Extreme heat rooted in dry soils. Nature Geoscience 4(1), 12-13. https://doi.org/10.1038/ngeo1045

Alexander, L., & Herold, N. (2016). ClimPACT2: Indices and software. UNSW: Sidney, Australia.

Anderson, G.B., & Bell, M.L. (2011). Heatwaves in the United States: mortality risk during heatwaves and effect modification by heatwave characteristics in 43 US communities. Environmental health perspectives 119(2), 210-218. https://doi.org/10.1289/ehp.1002313

Arsenovic, P., Tosic, I., & Unkasevic, M. (2015). Trends in combined climate indices in Serbia from 1961 to 2010. Meteorology and Atmospheric Physics, 127(4), 489-498. https://doi.org/10.1007/s00703-015-0380-6

Barnett, A.G., Hajat, S., Gasparrini, A., & Rocklov, J. (2012). Cold and heat waves in the United States. Environmental research, 112, 218-224. https://doi.org/10.1016/j.envres.2011.12.010

Barnston, A.G., & Livezey, E. (1987). Classification, seasonality and persistence of low‐frequency atmospheric circulation patterns. Monthly weather review, 115(6), 1083-1126. https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2

Basara, J.B., Basara, H.G., Illston, B.G., & Crawford, K.C. (2010). The impact of the urban heat island during an intense heat wave in Oklahoma City. Advances in Meteorology 2010. https://doi.org/10.1155/2010/230365

Barriopedro, D., García-Herrera, R., Lupo, A.R., & Hernández, E. (2006). A climatology of Northern Hemisphere blocking. Journal of Climate, 19(6), 1042-1063. https://doi.org/10.1175/JCLI3678.1

Beniston, M., Stephenson, D., Christensen, O., Ferro, C., Frei, C., Goyette, S., Hadsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T., & Woth, K. (2007). Future extreme events in European climate: an exploration of regional climate model projections. Climatic change, 81(1), 71-95. https://doi.org/10.1007/s10584-006-9226-z

Burić, D., Luković, J., Ducić, V., Dragojlović, J., Doderović, M. (2014). Recent trends in daily temperature extremes over southern Montenegro (1951–2010). Natural Hazards and Earth System Sciences, 14(1), 67-72. https://doi.org/10.5194/nhess-14-67-2014

Burić, D., Dragojlović, J.M., Milenković, M.D., Popović, L.Z., & Doderović, M.M. (2018). Influence of variability of the East Atlantic Oscillation on the air temperature in Montenegro. Thermal Science, 22(1 Part B), 759-766. https://doi.org/10.2298/TSCI170710211B

Burić D., Dragojlović J., Penjišević-Sočanac I., Luković J., Doderović M. (2019). Relationship Between Atmospheric Circulation and Temperature Extremes in Montenegro in the Period 1951–2010. Climate Change Adaptation in Eastern Europe 29-42. Springer. https://doi.org/10.1007/978-3-030-03383-5_3

Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V. & Codron, F. (2010). Winter 2010 in Europe: a cold extreme in a warming climate. Geophysical Research Letters, 37(20), L20704. https://doi:10.1029/2010GL044613

Chauvin, F., & Denvil, S. (2007). Changes in severe indices as simulated by two French coupled global climate models. Global and Planetary Change, 57(1-2), 96-117. https://doi.org/10.1016/j.gloplacha.2006.11.028

Chazarra, A., Lorenzo Mariño, B., Rodríguez Ballesteros, C., & Botey, M. R. (2020). Análisis de las temperaturas en España en el periodo 1961-2018. Vol. 1. Rejillas mensuales de temperatura 1961-2018. Publicaciones de AEMET,

Ciarlo, J.M., Aquilina, N.J. (2016). An analysis of teleconnections in the Mediterranean region using RegCM4. International Journal of Climatology, 36(2), 797-808. https://doi.org/10.1002/joc.4383

Clark, R.T., Brown, S.J., & Murphy, J.M. (2006). Modeling Northern Hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. Journal of Climate, 19(17), 4418-4435. https://doi.org/10.1175/JCLI3877.1

Comas-Bru, L., McDermott, F., & Werner, M. (2016). The effect of the East Atlantic pattern on the precipitation O-NAO relationship in Europe. Climate dynamics, 47(7), 2059-2069. https://doi.org/10.1007/s00382-015-2950-1

Cubasch, U., Wuebbles, D., Chen, D., Facchini, M.C., Frame, D., Mahowald, N., & Winther, J.G. (2013). Introduction Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex, PM Midgley (Eds). Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA.

D’Ippoliti, D., Michelozzi, P., Marino, C., de Donato, F., Menne, B., Katsouyanni, K., Kirchmayer, U., Analitis, A., Medina-Ramon, M., Paldy, A., Atkinson, R., Kovats, S., Bisanti, L., Schneider, A., Lefranc, A., Iniguez, C. & Perucci, C. (2010). The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environmental Health 9(1), 1-9. https://doi.org/10.1186/1476-069X-9-37

Doderovic, M.M., & Buric, B.D. (2015). Atlantic Multi-decadal Oscillation and changes of summer air temperature in Montenegro. Thermal Science 19(2), 405-414. https://doi.org/10.2298/TSCI150430115D

Dong T.Y, Dong W.J, Guo Y, Chou J.M, Yang S.L, Tian D & Yan D.D. (2018). Future temperature changes over the critical Belt and Road region based on CMIP5 models. Advances in climate change research, 9(1), 57-65. https://doi.org/10.1016/j.accre.2018.01.003

El Kenawy A.M, López-Moreno J.I, Vicente-Serrano S.M. (2011). Recent trends in daily temperature extremes over northeastern Spain (1960–2006). Nat Hazards Earth Syst Sci 11:2583–2603. https://doi.org/10.5194/nhess-11-2583-2011

Fischer, E. M., & Schär, C. (2010). Consistent geographical patterns of changes in high-impact European heatwaves. Nature geoscience, 3(6), 398-403. https://doi.org/10.1038/ngeo866

Frich, P., Alexander, L. V., Della-Marta, P. M., Gleason, B., Haylock, M., Tank, A. K., & Peterson, T. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate research, 19(3), 193-212. https://doi.org/10.3354/cr019193

Gabriel, K.M., & Endlicher, W.R. (2011). Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environmental pollution, 159(8-9), 2044-2050. https://doi.org/10.1016/j.envpol.2011.01.016

García-Herrera, R., Díaz, J., Trigo, R.M., Luterbacher & J, Fischer E.M. (2010). A review of the European summer heatwave of 2003. Critical Reviews in Environmental Science and Technology, 40(4), 267-306. https://doi.org/10.1080/10643380802238137

Gasparrini, A., Armstrong, B., & Kenward, M. G. (2010). Distributed lag non‐linear models. Statistics in medicine, 29(21), 2224-2234. https://doi.org/10.1002/sim.3940

Guijarro, J.A. (2011). User’s guide to Climatol. An R contributed package for homogenization of climatological series. State Meteorological Agency (AEMET). Balearic Islands Office, Spain. http://www.climatol.eu/climatol-guide.pdf.

Guijarro, J.A. (2018). Homogenization of Climatic Series with Climatol. Reporte técnico State Meteorological Agency (AEMET), Balearic Islands Office, Spain.

Huth, R., Kyselý, J., & Pokorná, L. (2000). A GCM simulation of heat waves, dry spells, and their relationships to circulation. Climatic Change, 46(1), 29-60. https://doi.org/10.1023/A:1005633925903

Kalkstein, L. S., & Valimont, K. M. (1986). An evaluation of summer discomfort in the United States using a relative climatological index. Bulletin of the American Meteorological Society, 67(7), 842-848. https://doi.org/10.1175/1520-0477(1986)067<0842:AEOSDI>2.0.CO;2

Karl, T. R., & Easterling, D. R. (1999). Climate extremes: Selected review and future research directions. Climatic change, 42(1), 309-325. https://doi.org/10.1007/978-94-015-9265-9_17

Karl, T. R., & Knight, R. W. (1997). The 1995 Chicago heat wave: how likely is a recurrence?. Bulletin of the American Meteorological Society, 78(6), 1107-1120 https://doi.org/10.1175/1520-0477(1997)078<1107:TCHWHL>2.0.CO;2

Karl, T. R., Knight, R. W., Easterling, D. R., & Quayle, R. G. (1996). Indices of climate change for the United States. Bulletin of the American Meteorological Society, 77(2), 279-292. https://doi.org/10.1175/1520-0477(1996)077<0279:IOCCFT>2.0.CO;2

Keevallik, S., & Vint, K. (2015). Temperature extremes and detection of heat and cold waves at three sites in Estonia. Proceedings of the Estonian Academy of Sciences, 64(4), 473. https://doi.org/10.3176/proc.2015.4.02

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93.

Klein Tank, A.M.G., Wijngaard, J.B., Können, G.P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern‐Hansen, C., Heino, R., & Bessemoulin, P. (2002). Daily dataset of 20th‐century surface air temperature and precipitation series for the European Climate AssessmentInternational Journal of Climatology: A Journal of the Royal Meteorological Society, 22(12), 1441-1453. https://doi.org/10.1002/joc.773

Kuglitsch, F. G., Toreti, A., Xoplaki, E., Della‐Marta, P. M., Zerefos, C. S., Türkeş, M., & Luterbacher, J. (2010). Heat wave changes in the eastern Mediterranean since 1960. Geophysical Research Letters, 37(4), L04802. https://doi.org/10.1029/2009GL041841

Kyselý, J. (2010). Recent severe heat waves in central Europe: how to view them in a long‐term prospect?. International Journal of Climatology: A Journal of the Royal Meteorological Society, 30(1), 89-109. https://doi.org/10.1002/joc.1874

Labajo, A.L., Egido, M., Martín, Q., Labajo, J., & Labajo, J.L. (2014). Definition and temporal evolution of the heat and cold waves over the Spanish Central Plateau from 1961 to 2010. Atmosfere 27(3), 273-286. https://doi.org/10.1016/S0187-6236(14)71116-6

Lemonsu, A., Viguié, V., Danie, M., & Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate 14(4), 586-605. https://doi.org/10.1016/j.uclim.2015.10.007

Lhotka, O., & Kyselý, J. (2015). Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. International Journal Climatology 35(7), 1232-1244. https://doi.org/10.1002/joc.4050

Li, D., & Bou-Zeid, E. (2013). Synergistic interactions between urban heat islands and heat waves: the impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology 52, 2051-2064. https://doi.org/10.1175/JAMC-D-13-02.1

Linares-Gil, C., Carmona-Alferez, R., Ortiz Burgos, C., & Diaz-Jimenez, J. (2017). Temperaturas extremas y salud. Cómo nos afectan las olas de calor y de frío. Instituto de Salud Carlos III, 114 pp.

Liu Q, Piao S, Janssens I.A, Fu Y, Peng S, Lian X & Wang T. (2018). Extension of the growing season increases vegetation exposure to frost. Nature Communications, 9(1), 1-8. https://doi.org/10.1038/s41467-017-02690-y

Liss, A., Wu, R., Chui, K. K. H., & Naumova, E. N. (2017). Heat-related hospitalizations in older adults: An amplified effect of the first seasonal heatwave. Scientific reports, 7(1), 1-14. https://doi.org/10.1038/srep39581

Lorenzo, M. N., Taboada, J. J., & Gimeno, L. (2008). Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain). International Journal of Climatology: A Journal of the Royal Meteorological Society, 28(11), 1493-1505. https://doi.org/10.1002/joc.1646

Meehl, G. A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994-997. https://doi.org/10.1126/science.1098704

Mikhailova, N. V., & Yurovsky, A. V. (2016). The East Atlantic oscillation: mechanism and impact on the European climate in winter. Physical Oceanography, (4). https://doi.org/10.22449/0233-7584-2016-4-27-37

Milošević, D., Savić, M., Stankov, U., Žiberna, I., Pantelić, M., Dolinaj, D., & Leščešen, I. (2017). Maximum temperatures over Slovenia and their relationship with atmospheric circulation patterns. Geografie, 122(1), 1–20. https://www.researchgate.net/Publication/304989253

Moore, G. W. K., & Renfrew, I. A. (2012). Cold European winters: interplay between the NAO and the East Atlantic mode. Atmospheric Science Letters, 13(1), 1-8. https://doi.org/10.1002/asl.356

Mora, C., Counsell, C. W., Bielecki, C. R., & Louis, L. V. (2017). Twenty-seven ways a heat wave can kill you: deadly heat in the era of climate change. Circulation: Cardiovascular Quality and Outcomes, 10(11), e004233. https://doi.org/10.1161/CIRCOUTCOMES.117.004233

Murphy, S. J., & Washington, R. (2001). United Kingdom and Ireland precipitation variability and the North Atlantic sea‐level pressure field. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(8), 939-959. https://doi.org/10.1002/joc.670

Nairn J.R & Fawcett R.G. (2013). Defining heatwaves: heatwave defined as a heat-impact event servicing all community and business sectors in Australia. CAWCR Technical Report 060. Centre for Australian Weather and Climate Research. Australian Government: Kent Town, Australia.

Perkins, S. E., & Alexander, L. V. (2013). On the measurement of heat waves. Journal of climate, 26(13), 4500-4517. https://doi.org/10.1175/JCLI-D-12-003831

Perkins, S. E. (2015). A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmospheric Research 164, 242-267. https://doi.org/10.1016/j.atmosres.2015.05.014

Schär, C., Vidale, P., Lüthi, D., Frei, C., Härbeli, C., Liniger, M.A., & Appenzeller, C. (2004). The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336 https://doi.org/10.1038/nature02300

Spinoni, J., Lakatos, M., Szentimrey, T., Bihari, Z., Szalai, S., Vogt, J., & Antofie, T. (2015). Heat and cold waves trends in the Carpathian Region from 1961 to 2010. International Journal of Climatology, 35(14), 4197-4209. https://doi.org/10.1002/joc.4279

Tomczyk, A. M., & Bednorz, E. (2014). Warm waves in north-western Spitsbergen. Polish Polar Research 35(3), 497-511. http://dx.doi.org/10.2478/popore-2014-0023

Tomczyk, A. M. (2015). Impact of macro-scale circulation types on the occurrence of frosty days in Poland. Bull. Geogr. Phys. Geogr. Ser, 9, 55-65. https://doi.org/10.1515/bgeo-2015-0016

Tomczyk, A. M., & Sulikowska, A. (2018). Heat waves in lowland Germany and their circulation-related conditions. Meteorology and Atmospheric Physics, 130(5), 499-515. https://doi.org/10.1007/s00703-017-0549-2

Trbić, G., Popov, T., & Gnjato, S. (2017). Analysis of air temperature trends in Bosnia and Herzegovina. Geographica Pannonica, 21(2), 68-84. https://doi.org/10.18421/GP21.02-01

Vautard, R., Yiou, P., D' Andrea, F., De Noblet, N., Viovy, N., Cassou, C., & Fan, Y. (2007). Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophysical Research Letters, 34(7), L07711 https://doi.org/10.1029/2006GL028001

Wang, Y., Shi, L. Zanobetti, A., & Schwartz, J. D. (2016). Estimating and projecting the effect of cold waves on mortality in 209 US cities. Environment international, 94, 141-149. https://doi.org/10.1016/j.envint.2016.05.008

Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly weather review, 109(4), 784-812. https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2

Wibig, J. (2018). Heat waves in Poland in the period 1951-2015: trends, patterns and driving factors. Meteorology Hydrology and Water Management. Research and Operational Applications, 6, 37-45. https://doi.org/10.26491/mhwm/78420

Published
2021/10/05
Section
Original Research