Comparison of daily and monthly intra-urban thermal reactions based on LCZ classification using surface and air temperature data

  • Cathy Fricke frcsaat@gmail.com
  • Rita Pongrácz
  • János Unger
Keywords: urban heat island; air and surface temperatures; MODIS; urban network

Abstract


Urban air (Ta) and surface (Ts) temperature patterns depend mainly on the surface cover conditions. WUDAPT methodology was used to create the local climate zone (LCZ) map of Szeged (Hungary) providing detailed information about the structure of the urban area. The seasonal and monthly variations of simultaneous measurements of Ta (urban network) and Ts (MODIS) in different LCZs were analysed for a four-year period. The results show that the largest differences between Ts and Ta values occur in late spring and summer. During the day, the monthly mean Ts was much higher than the mean Ta, while at night, the Ta exceeded the Ts in all LCZs. Linear statistical relationship was also analysed, which concluded that diurnal and nocturnal Ta and Ts are strongly correlated in all LCZs in Szeged.

References

Barteshagi K. C., Osmond, P., Peters, A. & Irger, M. (2018). Understanding land surface temperature differences of Local Climate Zones based on airborne remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 11, 2724–2730. DOI:10.1109/JSTARS.2018.2815004

Bechtel, B. & Daneke, C. (2012). Classification of Local Climate Zones based on Multiple Earth observation data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 99, 1–5. https://doi.org/10.1109/JSTARS.2012.2189873

Bechtel, B., Alexander, P.J., Böhner, J., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L. & Stewart, I. (2015). Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Internation Journal of Geo-Information, 4, 199–219. https://doi.org/10.3390/ijgi4010199

Bechtel B., Demuzere, M., Mills, G., Zhan, W., Sismanidis, P., Small, C. & Voogt, J. (2019a). SUHI analysis using Local Climate Zones—A comparison of 50 cities. Urban Climate, 28, 100451. https://doi.org/10.1016/j.uclim.2019.01.005

Bechtel, B., Alexander, P., Beck, C., Böhner, J., Brousse, O., Ching, J., Demuzere, M., Fonte, C., Gál, T., Hidalgo, J., Hoffmann, P., Middel, A., Mills, G., Ren, C., See, L., Sismanidis, P., Verdonck, M. L., Xu, G. & Xu, Y. (2019b). Generating WUDAPT Level 0 data – Current status of production and evaluation. Urban Climate, 27, 24–45. https://doi.org/10.1016/j.uclim.2018.10.001

Beck, C., Straub, A., Breitner, S., Cyrys, J., Philipp, A., Rathmann, J., Schneider, A., Wolf, K. & Jacobeit, J.  (2018). Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions. Urban Climate, 25, 152–166.  https://doi.org/10.1016/j.uclim.2018.04.007.

Chen, Y., Sun, H. & Li, J. (2016). Estimating daily maximum air temperature with MODIS data and a daytime temperature variation model in Beijing urban area. Remote Sensing Letters, 7(9), 865–874. https://doi.org/10.1080/2150704X.2016.1193792

Ching, J., See, L., Mills, G., Alexander, P., Bechtel, B., Feddema, J., Oleson, K.L., Stewart, I., Neophytou, M., Chen, F., Wang, X. & Hanna A. (2014). WUDAPT: Facilitating advanced urban canopy modeling for weather, climate and air quality applications. In: 94th American Meterological Society Annual Meeting, 2-6 February 2014, Georgia, USA.

Clinton, N. & Gong, P. (2013). MODIS detected surface urban heat islands and sinks: global locations and controls. Remote Sensing of Environment, 134, 294–304. https://doi.org/10.1016/j.rse.2013.03.008

Das, M. & Das, A. (2020). Assesing the relationship between local climate zones (LCZs) and land surface temperature (LST) – A case study of Sriniketan-Santiniketan Planning Area (SSPA), West Bengal, India. Urban Climate, 32, 1–18. https://doi.org/10.1016/j.uclim.2020.100591

Dian, Cs., Pongrácz, R., Dezső, Zs. & Bartholy, J. (2020). Annual and monthly analysis of surface urban heat island intensity with respect to the local climate zones in Budapest. Urban Climate, 31, 100573.  https://doi.org/10.1016/j.uclim.2019.100573

Du, P., Chen, J., Bai, X. & Han, W. (2020). Understanding the seasonal variations of land surface temperature in Nanjing urban area based on local climate zone. Urban Climate, 33, 100657. https://doi.org/10.1016/j.uclim.2020.100657

Fricke, C., Pongrácz, R., Gál, T., Savic, S. & Unger, J. (2020). Using local climate zones to compare remotely sensed surface temperatures in temperate cities and hot desert cities. Moravian Geographical Reports, 28, 48–60. https://doi.org/10.2478/mgr-2020-0004

Fu, P. & Weng, Q. (2018). Variability in annual temperature cycle in the urban areas of the United States as revealed by MODIS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 65–73. https://doi.org/10.1016/j.isprsjprs.2018.09.003

Geletič, J. & Lehnert, M. (2016). A GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Moravian Geographical Reports, 24(3), 2–12. https://doi.org/10.1515/mgr-2016-0012

Geletič, J., Lehnert, M. & Dobrovolný, P. (2016). Land surface temperature differences within Local Climate Zones, based on two Central European cities. Remote Sensing, 8. https://doi.org/10.3390/rs8100788

Geletič, J., Lehnert, M., Savić, S. & Milošević, D. (2019). Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Building and Environment, 156, 21–32. https://doi.org/10.1016/j.buildenv.2019.04.011

Gallo, K.P. & Owen, T.W. (1999). Satellite-based adjustments for the urban heat island temperature bias. Journal of Applied Meteorology, 38(6), 806–813. https://doi.org/10.1175/1520-0450(1999)038<0806:SBAFTU>2.0.CO;2

Gholami, R.M. & Beck, C. (2019). Towards the determination of driving factors of varying LST-LCZ relationship: A case study over 25 cities. Geographica Pannonica, 23, 289–307. https://doi.org/10.5937/gp23-24238

Harris, I., Jones, P.D., Osborn, T.J. & Lister, D.H. (2014). Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. International Journal of Climatology, 34, 623–642. https://doi.org/10.1002/joc.3711

Hereher, M.E. & El Kenawy, A. (2020). Extrapolation of daily air temperatures of Egypt from MODIS LST data. Geocarto International, 1-17. https://doi.org/10.1080/10106049.2020.1713229

Hidalgo, J., Dumas, G., Masson, V., Petit, G., Bechtel, B., Bocher, E., Foley, M., Schoetter, R. & Mills, G. (2019). Comparison between local climate zones maps derived from administrative datasets and satellite observations. Urban Climate, 27, 64–89. https://doi.org/10.1016/j.uclim.2018.10.004

Köppen, W. (1918). Klassifikation der Klimate nach Temperatur, Niederschlag und Jahreslauf. Classification of climates according to temperature, precipitation and the course oft he year. Pettersman Geographische Mitteilungen, September/Oktoberheft, 193–203.

Leconte, F., Bouyer, J., Claverie, R. & Pétrissans, M. (2015). Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Building and Environment, 83, 39–49. https://doi.org/10.1016/j.buildenv.2014.05.005

Lehnert, M., Savić, S., Milošević, D., Dunjić, J. & Geletič, J. (2021). Mapping Local Climate Zones and their applications in European urban environments: A systematic literature review and future development trends. ISPRS International Journal of Geo-Information, 10, 260. https://doi.org/10.3390/ijgi10040260

Lelovics, E., Unger, J., Gál, T. & Gál, C.V. (2014). Design of an urban monitoring network based on Local Climate Zone mapping and temperature pattern modelling. Climate Research, 60, 51–62. https://doi.org/10.3354/cr01220

Li, L., Zha, Y. & Wang, R. (2020). Relationship of surface urban heat island with air temperature and precipitation in global large cities, Ecological Indicators, 117, 106683. https://doi.org/10.1016/j.ecolind.2020.106683.

National Aeronautics and Space Administration, (1999). Science writers’ guide to Terra. NASA Earth Observing System Project Science Office, Greenbelt, MD. 28p.

Oke, T.R., Mills, G., Christen, A. & Voogt, J.A. (2017). Urban Climates. Cambridge, Cambridge University Press.

Oliveira, A., Lopes, A. & Niza, S. (2020). Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data. Urban Climate, 33, 100631.  https://doi.org/10.1016/j.uclim.2020.100631.

Oxoli, D., Ronchetti, G., Minghini, M., Molinari, M.E., Lotfian, M., Sona, G. & Brovelli, M.A. (2018). Measuring urban land cover influence on air temperature through multiple Geo-Data—The case of Milan, Italy. ISPRS International Journal of Geo-Information, 7, 421. https://doi.org/:10.3390/ijgi7110421

Quan, J.Q. & Bansal, P. (2021). A systematic review of GIS-based local climate zone mapping studies. Building and Environment, 196, 107791. https://doi.org/10.1016/j.buildenv.2021.107791

Quan, S. J., Dutt, F., Woodworth, E., Yamagata, Y. & Yang, P.P-J. (2017). Local Climate Zone mapping for energy resilience: A fine-grained and 3D approach. Energy Procedia, 105, 3777–3783. https://doi.org/10.1016/j.egypro.2017.03.883

See, L., Perger, C., Dürauer, M., Fritz, S., Bechtel, B., Ching, J., Alexander, P., Mills, G., Foley, M., O’Connor, M., Stewart, I., Feddema, J. & Masson V. (2015). Developing a community-based worldwide urban morphology and materials database (WUDAPT) using remote sensing and crowdsourcing for improved urban climate modelling. Joint Urban Remote Sensing Event (JURSE 2015) Lausanne. 208–211.  https://doi.org/10.1109/JURSE.2015.7120501

Šećerov, I., Savić, S., Milošević, D., Arsenović, D., Dolinaj, D. & Popov, S. (2019). Progressing urban climate research using a high-density monitoring network system. Environmental Monitoring and Assessment, 191. https://doi.org/10.1007/s10661-019-7210-0

Skarbit, N., Gál, T. & Unger, J. (2015). Airborne surface temperature differences of the different Local Climate Zones in the urban area of a medium sized city. Joint Urban Remote Sensing Event (JURSE 2015), Lausanne, Switzerland, PID3445901. https://doi.org/10.1109/JURSE.2015.7120497

Skarbit, N., Stewart, I.D., Unger, J. & Gál, T. (2017). Employing an urban meteorological network to monitor air temperature conditions in the ‘local climate zones’ of Szeged, Hungary. International. Journal of Climatology, 37(S1), 582–596. https://doi.org/10.1002/joc.5023

Stewart, I.D. & Oke, T.R. (2012). Local Climate Zones for urban temperature studies. Bulletin of the. American Meteorological Society, 93, 1879–1900. https://doi.org/10.1175/BAMS-D-11-00019.1

Stewart, I.D., Oke, T.R. & Krayenhoff, E.S. (2014). Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. International Journal of Climatology, 34, 1062–1080. https://doi.org/10.1002/joc.3746

Unger, J., Savić, S. & Gál, T. (2011). Modelling of the annual mean urban heat island pattern for planning of representative urban climate station network. Advances in Meteorology, 398613. https://doi.org/10.1155/2011/398613

U.S. Geological Survey. Available at: https://earthexplorer.usgs.gov (last accessed: 15 March 2021)

Wan, Z. & Snyder, W. (1999). MODIS land-surface temperature algorithm theoretical basis document. Institute for Computational Earth Systems Science, University of California, Santa Barbara.

Wang, R., Ren, C., Xu, Y., Lau, K.K-L. & Shi, Y. (2018a). Mapping the local climate zones of urban areas by GIS-based and WUDAPT methods: A case study of Hong Kong. Urban Climate, 24, 567–575. https://doi.org/10.1016/j.uclim.2017.10.001

Wang, C., Middel, A., Myint, S.W., Kaplan, S., Brazel, A.J. & Lukasczyk, J. (2018b). Assessing local climate zones in arid cities: The case of Phoenix, Arizona and Las Vegas, Nevada. ISPRS Journal of Photogrammetry and Remote Sensing, 141, 59–71. https://doi.org/10.1016/j.isprsjprs.2018.04.009.

WUDAPT (World Urban Database and Access Portal Tools). Available at: http://www.wudapt.org (last accessed: 15 Oct 2021)

Yang, X., Yao, L., Jin, T., Peng, L.L.H., Jiang, Z., Hu, Z. & Ye Y. (2018). Assessing the thermal behavior of different local climate zones in the Nanjing metropolis, China. Building and Environment, 137, 171–184. https://doi.org/10.1016/j.buildenv.2018.04.009

Yang, C., Yan, F. & Zhang, S. (2020). Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. Journal of Environment Management, 265, 110563. https://doi.org/10.1016/j.jenvman.2020.110563.

Zhou, B., Rybski, D. & Kropp, J.P. (2013). On the statistics of urban heat island intensity. Geophysical Research Letters, 40, 5486–5491. https://doi.org/10.1002/2013GL057320

Zhu, W., Lü, A. & Jia, S. (2013). Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sensing of Environment, 130, 62–73. https://doi.org/10.1016/j.rse.2012.10.034.

Published
2022/04/03
Section
Original Research