Biometeorological conditions during hot summer days in diverse urban environments of Banja Luka (Bosnia and Herzegovina)
Abstract
Intensive urbanization and global warming are impacting the health and well-being of urban population. Nevertheless, urban environments with different designs will have different micro and local climate conditions. This study used data from micrometeorological measurements performed in different urban spaces (downtown, urban park, riverside) in Banja Luka, Bosnia and Herzegovina, on hot summer days in June 2021. Air temperature, relative humidity, wind speed, and globe temperature were measured and Mean Radiant Temperature (Tmrt), Psychologically Equivalent Temperature (PET), and modified Psychologically Equivalent Temperature (mPET) were calculated for each location. Results show that the downtown is the most uncomfortable area in terms of the highest Ta, Tg, Tmrt, PET, and mPET values registered at this location. The urban park is the most comfortable area with the lowest values of Tg, Tmrt, PET, and mPET. Relative humidity is the highest at the riverside and the lowest in downtown. Furthermore, riverside had lower average Ta during summer daytime compared to urban park and downtown likely due to the synergy between river cooling effect (evaporation and sensible heat transfer) and tree shade.
References
Allen, M. J., & Sheridan, S. C. (2018). Mortality risks during extreme temperature events (ETEs) using a distributed lag non-linear model. International journal of biometeorology, 62(1), 57-67. https://doi.org/10.1007/s00484-015-1117-4
Alonso, L., & Renard, F. (2020a). A new approach for understanding urban microclimate by integrating complementary predictors at different scales in regression and machine learning models. Remote Sensing, 12(15), 2434. https://doi.org/10.3390/rs12152434
Alonso, L., & Renard, F. (2020b). A comparative study of the physiological and socio-economic vulnerabilities to heat waves of the population of the Metropolis of Lyon (France) in a climate change context. International Journal of Environmental Research and Public Health, 17(3), 1004. https://doi.org/10.3390/ijerph17031004
Aminipouri, M., Rayner, D., Lindberg, F., Thorsson, S., Knudby, A.J., Zickfeld, K., Middel, A. & Krayenhoff, E.S. (2019). Urban tree planting to maintain outdoor thermal comfort under climate change: The case of Vancouver's local climate zones. Building and Environment, 158, 226-236. https://doi.org/10.1016/j.buildenv.2019.05.022
Anderson, V., Leung, A.C., Mehdipoor, H., Jänicke, B., Milošević, D., Oliveira, A., Manavvi, S., Kabano, P., Dzyuban, Y., Aguilar, R. & Agan, P.N. (2021). Technological opportunities for sensing of the health effects of weather and climate change: a state-of-the-art-review. International Journal of Biometeorology, 65, 779-803. https://doi.org/10.1007/s00484-020-02063-z
Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology: a Journal of the Royal Meteorological Society, 23(1), 1-26. https://doi.org/10.1002/joc.859
Arsenović, D., Lehnert, M., Fiedor, D., Šimáček, P., Středová, H., Středa, T., & Savić, S. (2019a). Heat-waves and mortality in Czech cities: A case study for the summers of 2015 and 2016. Geographica Pannonica, 23(3), 162-172. https://doi.org/10.5937/gp23-22853
Arsenović, D., Savić, S., Lužanin, Z., Radić, I., Milošević, D., & Arsić, M. (2019b). Heat-related mortality as an indicator of population vulnerability in a mid-sized Central European city (Novi Sad, Serbia, summer 2015). Geographica Pannonica, 23(4), 204-215. https://doi.org/10.5937/gp23-22680
Atanasova, N., Castellar, J.A., Pineda-Martos, R., Nika, C.E., Katsou, E., Istenič, D., Pucher, B., Andreucci, M.B. & Langergraber, G. (2021). Nature-Based Solutions and Circularity in Cities. Circular Economy and Sustainability, 1, 319-332. https://doi.org/10.1007/s43615-021-00024-1
Bajšanski, I. V., Milošević, D. D., & Savić, S. M. (2015). Evaluation and improvement of outdoor thermal comfort in urban areas on extreme temperature days: Applications of automatic algorithms. Building and Environment, 94, 632-643. https://doi.org/10.1016/j.buildenv.2015.10.019
Bokwa, A., Geletič, J., Lehnert, M., Žuvela-Aloise, M., Hollósi, B., Gal, T., Skarbit, N., Dobrovolný, P., Hajto, M.J., Kielar, R., Walawender, J.P., Šťastný, P., Holec, J., Ostapowicz, K., Burianová, J., & Garaj, M. (2019). Heat load assessment in Central European cities using an urban climate model and observational monitoring data. Energy and Buildings, 201, 53-69. https://doi.org/10.1016/j.enbuild.2019.07.023
Castellar, J.A.C., Popartan, L.A., Pueyo-Ros, J., Atanasova, N., Langergraber, G., Säumel, I., Corominas, L., Comas, J., & Acuna, V. (2021). Nature-based solutions in the urban context: Terminology, classification and scoring for urban challenges and ecosystem services. Science of The Total Environment, 779, 146237. https://doi.org/10.1016/j.scitotenv.2021.146237
Castillo, A., Correa, E., & Cantón, M. (2021). Microclimatic Behavior of Sustainable Urban Schemes Proposed for Hillside Areas Versus Existing Neighborhoods in the Metropolitan Area of Mendoza, Argentina. Geographica Pannonica. DOI: 10.5937/gp25-30532 (In press)
Chen, Y. C., & Matzarakis, A. (2018). Modified physiologically equivalent temperature—Basics and applications for western European climate. Theoretical and applied climatology, 132(3), 1275-1289. https://doi.org/10.1007/s00704-017-2158-x
Crank, P. J., Middel, A., Wagner, M., Hoots, D., Smith, M., & Brazel, A. (2020). Validation of seasonal mean radiant temperature simulations in hot arid urban climates. Science of the Total Environment, 749, 141392. https://doi.org/10.1016/j.scitotenv.2020.141392
Cugnon, G., Caluwaerts, S., Duchêne, F., Hamdi, R., Termonia, P., Top, S., & Vergauwen, T. (2019). Climate sensitivity to land use changes over the city of Brussels. Geographica Pannonica, 23(4), 269-276. 10.5937/gp23-24214
Dian, C., Pongrácz, R., Incze, D., Bartholy, J., & Talamon, A. (2019). Analysis of the urban heat island intensity based on air temperature measurements in a renovated part of Budapest (Hungary). Geographica Pannonica, 23(4), 277-288. https://doi.org/10.5937/gp23-23839
Dunjić, J. (2019). Outdoor thermal comfort research in urban areas of Central and Southeast Europe: A review. Geographica Pannonica, 23(4), 359-373. https://doi.org/10.5937/gp23-24458
Dunjić, J., Milošević, D., Kojić, M., Savić, S., Lužanin, Z., Šećerov, I., & Arsenović, D. (2021). Air Humidity Characteristics in “Local Climate Zones” of Novi Sad (Serbia) Based on Long-Term Data. ISPRS International Journal of Geo-Information, 10(12), 810. https://doi.org/10.3390/ijgi10120810
Fischer, E. M., & Schär, C. (2010). Consistent geographical patterns of changes in high-impact European heatwaves. Nature geoscience, 3(6), 398-403. https://doi.org/10.1038/ngeo866
Gál, C. V., & Kántor, N. (2020). Modeling mean radiant temperature in outdoor spaces, A comparative numerical simulation and validation study. Urban Climate, 32, 100571. https://doi.org/10.1016/j.uclim.2019.100571
Gál, T., Mahó, S. I., Skarbit, N., & Unger, J. (2021). Numerical modelling for analysis of the effect of different urban green spaces on urban heat load patterns in the present and in the future. Computers, Environment and Urban Systems, 87, 101600. https://doi.org/10.1016/j.compenvurbsys.2021.101600
Geletič, J., Lehnert, M., Savić, S., & Milošević, D. (2018). Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Science of the total environment, 624, 385-395. https://doi.org/10.1016/j.scitotenv.2017.12.076
Geletič, J., Lehnert, M., & Jurek, M. (2020). Spatiotemporal variability of air temperature during a heat wave in real and modified landcover conditions: Prague and Brno (Czech Republic). Urban Climate, 31, 100588. https://doi.org/10.1016/j.uclim.2020.100588
Geletič, J., Lehnert, M., Krč, P., Resler, J., & Krayenhoff, E. S. (2021). High-resolution modelling of thermal exposure during a hot spell: a case study using PALM-4U in Prague, Czech Republic. Atmosphere, 12(2), 175. https://doi.org/10.3390/atmos12020175
Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S. P., Vautard, R., Donnelly, C., Koutroulis, A.G., Grillakis, M.G., Tsanis, I.K., Damm, A., & Sakalli, A. (2018). Climate impacts in Europe under+ 1.5 C global warming. Earth's Future, 6(2), 264-285. https://doi.org/10.1002/2017EF000710
Jacobs, C., Klok, L., Bruse, M., Cortesão, J., Lenzholzer, S., & Kluck, J. (2020). Are urban water bodies really cooling?. Urban Climate, 32, 100607. https://doi.org/10.1016/j.uclim.2020.100607
Jamei, E., Seyedmahmoudian, M., Horan, B., & Stojcevski, A. (2019). Verification of a bioclimatic modeling system in a growing suburb in Melbourne. Science of the total environment, 689, 883-898. https://doi.org/10.1016/j.scitotenv.2019.06.399
Jänicke, B., Milošević, D., & Manavvi, S. (2021). Review of User-Friendly Models to Improve the Urban Micro-Climate. Atmosphere, 12(10), 1291. https://doi.org/10.3390/atmos12101291
Kántor, N., & Unger, J. (2011). The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Central European Journal of Geosciences, 3(1), 90-100. https://doi.org/10.2478/s13533-011-0010-x
Kántor, N., Chen, L., & Gál, C. V. (2018b). Human-biometeorological significance of shading in urban public spaces—Summertime measurements in Pécs, Hungary. Landscape and urban planning, 170, 241-255. https://doi.org/10.1016/j.landurbplan.2017.09.030
Kántor, N., Gál, C. V., Gulyás, Á., & Unger, J. (2018). The impact of façade orientation and woody vegetation on summertime heat stress patterns in a central European square: comparison of radiation measurements and simulations. Advances in Meteorology, 2018. https://doi.org/10.1155/2018/2650642
Konstantinov, P., Varentsov, M., & Esau, I. (2018). A high density urban temperature network deployed in several cities of Eurasian Arctic. Environmental Research Letters, 13(7), 075007. https://doi.org/10.1088/1748-9326/aacb84
Konstantinov, P., Shartova, N., Varentsov, M., & Revich, B. (2020). Evaluation of outdoor thermal comfort conditions in northern Russia over 30-year period: Arkhangelsk region. Geographica Pannonica, 24(4), 252-260. 10.5937/gp24-24738
Konstantinov, P., Tattimbetova, D., Varentsov, M., & Shartova, N. (2021). Summer thermal comfort in Russian big cities (1966-2015). Geographica Pannonica, 25(1), 35-41. doi: 10.5937/gp25-29440
Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated, Meteorologische Zeitschrift, 15(3), 259–263. DOI: 10.1127/0941-2948/2006/013.
Kovács, A., & Németh, Á. (2012). Tendencies and differences in human thermal comfort in distinct urban areas in Budapest, Hungary. Acta Climatologica et Chorologica, 46, 115–124.
Lai, D., Liu, W., Gan, T., Liu, K., & Chen, Q. (2019). A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment, 661, 337-353. https://doi.org/10.1016/j.scitotenv.2019.01.062
Langergraber, G., Castellar, J. A., Pucher, B., Baganz, G. F., Milosevic, D., Andreucci, M. B., Kearney, K., Pineda-Martos, R., & Atanasova, N. (2021). A framework for addressing circularity challenges in cities with nature-based solutions. Water, 13(17), 2355. https://doi.org/10.3390/w13172355
Leconte, F., Bouyer, J., & Claverie, R. (2020). Nocturnal cooling in Local Climate Zone: Statistical approach using mobile measurements. Urban Climate, 33, 100629. https://doi.org/10.1016/j.uclim.2020.100629
Lehnert, M., Brabec, M., Jurek, M., Tokar, V., & Geletič, J. (2021). The role of blue and green infrastructure in thermal sensation in public urban areas: A case study of summer days in four Czech cities. Sustainable Cities and Society, 66, 102683. https://doi.org/10.1016/j.scs.2020.102683
Lehnert, M., Tokar, V., Jurek, M., & Geletič, J. (2021b). Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. International Journal of Biometeorology, 65(8), 1277-1289. https://doi.org/10.1007/s00484-020-02010-y
Lelovics, E., Unger, J., Savić, S., Gál, T. M., Milošević, D., Gulyás, Á., Marković, V., Arsenović, D., & Gál, C. V. (2016). Intra-urban temperature observations in two Central European cities: a summer study. Időjárás/Quarterly Journal of The Hungarian Meteorological Service, 120(3), 283-300.
Liu, A., Xu, Q., Gao, J., Xu, Z., & Han, L. (2019). Improving schoolyard wind environments: Case studies in two schools in Nanjing. Geographica Pannonica, 23(4), 256-268. DOI: 10.5937/gp23-24183
Lukić, M., Filipović, D., Pecelj, M., Crnogorac, L., Lukić, B., Divjak, L., Lukić, A., & Vučićević, A. (2021). Assessment of Outdoor Thermal Comfort in Serbia’s Urban Environments during Different Seasons. Atmosphere, 12(8), 1084. https://doi.org/10.3390/atmos12081084
Manavvi, S., & Rajasekar, E. (2021). Evaluating outdoor thermal comfort in “Haats”–The open air markets in a humid subtropical region. Building and Environment, 190, 107527. https://doi.org/10.1016/j.buildenv.2020.107527
Matzarakis, A., & Mayer, H. (1996). Another kind of environmental stress: thermal stress. WHO newsletter, 18, 7–10.
Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments—application of the RayMan model. International journal of biometeorology, 51(4), 323-334. https://doi.org/10.1007/s00484-006-0061-8
Matzarakis, A., Rutz, F., & Mayer, H. (2010). Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International journal of biometeorology, 54(2), 131-139. https://doi.org/10.1007/s00484-009-0261-0
Middel, A., Selover, N., Hagen, B., & Chhetri, N. (2016). Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona. International journal of biometeorology, 60(12), 1849-1861. https://doi.org/10.1007/s00484-016-1172-5
Middel, A., & Krayenhoff, E. S. (2019). Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Science of the total environment, 687, 137-151. https://doi.org/10.1016/j.scitotenv.2019.06.085
Middel, A., Alkhaled, S., Schneider, F. A., Hagen, B., & Coseo, P. (2021). 50 Grades of Shade. Bulletin of the American Meteorological Society, 102(9), E1805-E1820. https://doi.org/10.1175/BAMS-D-20-0193.1
Milošević, D. D., Savić, S. M., Marković, V., Arsenović, D., & Šećerov, I. (2016). Outdoor human thermal comfort in local climate zones of Novi Sad (Serbia) during heat wave period. Hungarian Geographical Bulletin, 65(2), 129-137. https://doi.org/10.15201/hungeobull.65.2.4
Milošević, D. D., Bajšanski, I. V., & Savić, S. M. (2017). Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban forestry & urban greening, 23, 113-124. https://doi.org/10.1016/j.ufug.2017.03.011
Milosevic, D., Dunjić, J., & Stojanović, V. (2020). Investigating micrometeorological differences between saline steppe, forest-steppe and forest environments in northern Serbia during a clear and sunny autumn day. Geographica Pannonica, 24(3), 176-186. https://doi.org/10.5937/gp24-25885
Milošević, D., Savić, S., Kresoja, M., Lužanin, Z., Šećerov, I., Arsenović, D., Dunjić, J., & Matzarakis, A. (2021). Analysis of air temperature dynamics in the “local climate zones” of Novi Sad (Serbia) based on long-term database from an urban meteorological network. International Journal of Biometeorology, 1-14. https://doi.org/10.1007/s00484-020-02058-w
Morakinyo, T. E., Ouyang, W., Lau, K. K. L., Ren, C., & Ng, E. (2020). Right tree, right place (urban canyon): Tree species selection approach for optimum urban heat mitigation-development and evaluation. Science of the Total Environment, 719, 137461. https://doi.org/10.1016/j.scitotenv.2020.137461
Müller, N., Kuttler, W., & Barlag, A. B. (2014). Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and applied climatology, 115(1), 243-257. https://doi.org/10.1007/s00704-013-0890-4
Nimac, I., Herceg-Bulić, I., Cindrić Kalin, K., & Perčec Tadić, M. (2021). Changes in extreme air temperatures in the mid-sized European city situated on southern base of a mountain (Zagreb, Croatia). Theoretical and Applied Climatology, 146(1), 429-441. https://doi.org/10.1007/s00704-021-03689-8
Oliveira, A., Lopes, A., Correia, E., Niza, S., & Soares, A. (2021a). An urban climate-based empirical model to predict present and future patterns of the Urban Thermal Signal. Science of The Total Environment, 790, 147710. https://doi.org/10.1016/j.scitotenv.2021.147710
Oliveira, A., Lopes, A., Correia, E., Niza, S., & Soares, A. (2021b). Heatwaves and summer urban heat islands: a daily cycle approach to unveil the urban thermal signal changes in Lisbon, Portugal. Atmosphere, 12(3), 292. https://doi.org/10.3390/atmos12030292
Paramita, B., & Matzarakis, A. (2019). Urban morphology aspects on microclimate in a hot and humid climate. Geographica Pannonica, 23(4), 398-410. DOI: 10.5937/gp23-24260
Park, C. Y., Lee, D. K., Asawa, T., Murakami, A., Kim, H. G., Lee, M. K., & Lee, H. S. (2019). Influence of urban form on the cooling effect of a small urban river. Landscape and urban planning, 183, 26-35. https://doi.org/10.1016/j.landurbplan.2018.10.022
Pearlmutter, D., Pucher, B., Calheiros, C.S., Hoffmann, K.A., Aicher, A., Pinho, P., Stracqualursi, A., Korolova, A., Pobric, A., Galvão, A. & Tokuç, A. (2021). Closing water cycles in the built environment through nature-based solutions: The contribution of vertical greening systems and green roofs. Water, 13(16), 2165. https://doi.org/10.3390/w13162165
Pecelj, M., Matzarakis, A., Vujadinović, M., Radovanović, M., Vagić, N., Đurić, D., & Cvetkovic, M. (2021). Temporal Analysis of Urban-Suburban PET, mPET and UTCI Indices in Belgrade (Serbia). Atmosphere, 12(7), 916. https://doi.org/10.3390/atmos12070916
Popov, T., Gnjato, S., Trbić, G., & Ivanišević, M. (2018). Recent trends in extreme temperature indices in Bosnia and Herzegovina. Carpathian Journal of Earth and Environmental Sciences, 13(1), 211-224. DOI:10.26471/cjees/2018/013/019
Popov, T., Gnjato, S., & Trbić, G. (2019). Changes in extreme temperature indices over the Peripannonian region of Bosnia and Herzegovina. Geografie, 124(1), 19-40. https://doi.org/10.37040/geografie2019124010019
Ramadhan, T., Jurizat, A., Syafrina, A., & Rahmat, A. (2021). Investigating outdoor thermal comfort of educational building complex in urban area: A case study in Universitas Kebangsaan, Bandung city. Geographica Pannonica, 25(2), 85-101. DOI: 10.5937/gp25-30430
Republic Hydrometeorological Service of Republic of Srpska, Bosnia and Herzegovina (2021). Meteorological data from station Banja Luka. Available at: https://rhmzrs.com/
Savić, S., Marković, V., Šećerov, I., Pavić, D., Arsenović, D., Milošević, D., Dolinaj, D., Nagy, I. & Pantelić, M. (2018). Heat wave risk assessment and mapping in urban areas: case study for a midsized Central European city, Novi Sad (Serbia). Natural hazards, 91(3), 891-911. https://doi.org/10.1007/s11069-017-3160-4
Santamouris, M., Synnefa, A., & Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, 85(12), 3085-3102. https://doi.org/10.1016/j.solener.2010.12.023
Sheridan, S. C., & Allen, M. J. (2018). Temporal trends in human vulnerability to excessive heat. Environmental research letters, 13(4), 043001. https://doi.org/10.1088/1748-9326/aab214
Skarbit, N., Stewart, I. D., Unger, J., & Gál, T. (2017). Employing an urban meteorological network to monitor air temperature conditions in the ‘local climate zones’ of Szeged, Hungary. International Journal of Climatology, 37, 582-596, https://doi.org/10.1002/joc.5023
Syafii, N. (2021). Promoting urban water bodies as a potential strategy to improve urban thermal environment. Geographica Pannonica, 25(2),113-120. https://doi.org/10.5937/gp25-30431
Tablada, A., De Troyer, F., Blocken, B., Carmeliet, J., & Verschure, H. (2009). On natural ventilation and thermal comfort in compact urban environments–the Old Havana case. Building and Environment, 44(9), 1943-1958. https://doi.org/10.1016/j.buildenv.2009.01.008
Tan, Z., Lau, K. K. L., & Ng, E. (2016). Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 114, 265-274. https://doi.org/10.1016/j.enbuild.2015.06.031
Tan, Z., Lau, K. K. L., & Ng, E. (2017). Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Building and Environment, 120, 93-109. https://doi.org/10.1016/j.buildenv.2017.05.017
Thorsson, S., Lindberg, F., Eliasson, I., & Holmer, B. (2007). Different methods for estimating the mean radiant temperature in an outdoor urban setting. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(14), 1983-1993. https://doi.org/10.1002/joc.1537
Top, S., Milošević, D., Caluwaerts, S., Hamdi, R., & Savić, S. (2020). Intra-urban differences of outdoor thermal comfort in Ghent on seasonal level and during record-breaking 2019 heat wave. Building and Environment, 185, 107103. https://doi.org/10.1016/j.buildenv.2020.107103
Trbic, G. (2011) Екоклиматска рејонизација Перипанонског обода Републике Српска (Ecoclimatological regionalisation of Peripanonian rim of Republika Srpka, Географско друштво Републике Српке, 2011, 1-189. (in Serbian)
Trbić, G., Popov, T., & Gnjato, S. (2017). Analysis of air temperature trends in Bosnia and Herzegovina. Geographica Pannonica, 21(2), 68-84. DOI: 10.18421/GP21.02-01
Unger, J., Skarbit, N., & Gál, T. (2018). Evaluation of outdoor human thermal sensation of local climate zones based on long-term database. International journal of biometeorology, 62(2), 183-193. https://doi.org/10.1007/s00484-017-1440-z
Unger, J., Skarbit, N., Kovács, A., & Gál, T. (2020). Comparison of regional and urban outdoor thermal stress conditions in heatwave and normal summer periods: A case study. Urban Climate, 32, 100619. https://doi.org/10.1016/j.uclim.2020.100619
Vanos, J. K., Rykaczewski, K., Middel, A., Vecellio, D. J., Brown, R. D., & Gillespie, T. J. (2021). Improved methods for estimating mean radiant temperature in hot and sunny outdoor settings. International journal of biometeorology, 65(6), 967-983. https://doi.org/10.1007/s00484-021-02131-y
Varentsov, M., Shartova, N., Grischenko, M., & Konstantinov, P. (2020). Spatial patterns of human thermal comfort conditions in Russia: Present climate and trends. Weather, Climate, and Society, 12(3), 629-642. https://doi.org/10.1175/WCAS-D-19-0138.1
Vecellio, D. J., Bardenhagen, E. K., Lerman, B., & Brown, R. D. (2021). The role of outdoor microclimatic features at long-term care facilities in advancing the health of its residents: An integrative review and future strategies. Environmental research, 111583. https://doi.org/10.1016/j.envres.2021.111583
Wang, X., Liu, F., & Xu, Z. (2019). Analysis of urban public spaces' wind environment by applying the CFD simulation method: A case study in Nanjing. Geographica Pannonica, 23(4), 308-317. https://doi.org/10.5937/gp23-24249
Webb, B. (2016). The use of urban climatology in local climate change strategies: a comparative perspective. International Planning Studies, 22(2), 68-84. https://doi.org/10.1080/13563475.2016.1169916
Yang, P., Ren, G., & Hou, W. (2017). Temporal–spatial patterns of relative humidity and the urban dryness island effect in Beijing City. Journal of Applied Meteorology and Climatology, 56(8), 2221-2237. https://doi.org/10.1175/JAMC-D-16-0338.1
Žiberna, I., Pipenbaher, N., Donša, D., Škornik, S., Kaligarič, M., Bogataj, L.K., Črepinšek, Z., Grujić, V.J. & Ivajnšič, D. (2021). The Impact of Climate Change on Urban Thermal Environment Dynamics. Atmosphere, 12(9), 1159. https://doi.org/10.3390/atmos12091159